• Title/Summary/Keyword: global optimization

Search Result 1,106, Processing Time 0.026 seconds

A Study for Global Optimization Using Dynamic Encoding Algorithm for Searches

  • Kim, Nam-Geun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.857-862
    • /
    • 2004
  • This paper analyzes properties of the recently developed nonlinear optimization method, Dynamic Encoding Algorithm for Searches (DEAS) [1]. DEAS locates local minima with binary strings (or binary matrices for multi-dimensional problems) by iterating the two operators; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., zero or one), while UDS performs increment or decrement to binary strings with no change of string length. Owing to these search routines, DEAS retains the optimization capability that combines the special features of several conventional optimization methods. In this paper, a special feature of BSS and UDS in DEAS is analyzed. In addition, a effective global search strategy is established by using information of DEAS. Effectiveness of the proposed global search strategy is validated through the well-known benchmark functions.

  • PDF

Global Optimization Using Differential Evolution Algorithm (차분진화 알고리듬을 이용한 전역최적화)

  • Jung, Jae-Joon;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2003
  • Differential evolution (DE) algorithm is presented and applied to global optimization in this research. DE suggested initially fur the solution to Chebychev polynomial fitting problem is similar to genetic algorithm(GA) including crossover, mutation and selection process. However, differential evolution algorithm is simpler than GA because it uses a vector concept in populating process. And DE turns out to be converged faster than CA, since it employs the difference information as pseudo-sensitivity In this paper, a trial vector and its control parameters of DE are examined and unconstrained optimization problems of highly nonlinear multimodal functions are demonstrated. To illustrate the efficiency of DE, convergence rates and robustness of global optimization algorithms are compared with those of simple GA.

Efficient Adaptive Global Optimization for Constrained Problems (구속조건이 있는 문제의 적응 전역최적화 효율 향상에 대한 연구)

  • Ahn, Joong-Ki;Lee, Ho-Il;Lee, Sung-Mhan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.557-563
    • /
    • 2010
  • This paper addresses the issue of adaptive global optimization using Kriging metamodel known as EGO(Efficient Global Optimization). The algorithm adaptively chooses where to generate subsequent samples based on an explicit trade-off between reduction of global uncertainty and exploration of the region of the interest. A strategy that saves the computational cost by using expectations derived from probabilistic nature of approximate model is proposed. At every iteration, a candidate test point that seems to be feasible/inactive or has little possibility to improve for minimum is identified and excluded from updating approximate models. By doing that the computational cost is saved without loss of accuracy.

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.

A Study on the Global Optimization Using the Alienor Method and Lipschitzian Optimization (Alienor Method와 Lipschitzian Optimization을 이용한 전역적 최적화에 대한 연구)

  • Kim, Hyoung-Rae;Lee, Na-Ri;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.212-217
    • /
    • 2007
  • The Alienor method is a powerful tool for solving global optimization problems. It allows the transformation of a multi-variable problem into a new one that depends on a single variable. Any one-dimensional global optimization method can then be used to solve the transformed problem. Several one-dimensional global optimization methods coupled with the Alienor method have been suggested by mathematicians and it is shown that the suggested methods are successful for test functions. However, there are problems with these methods in engineering practice. In this paper, Lipschitzian optimization without using the Lipschitz constant is coupled with the Alienor method and applied to the test functions. Using test functions, it is shown that the suggested method can be successfully applied to global optimization problems.

Surrogate-Based Improvement on Cuckoo Search for Global Constrained Optimization (근사 최적화를 활용한 뻐꾸기 탐색법의 성능 개선)

  • Lee, Se Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2014
  • Engineering applications of global optimization techniques are recently abundant in the literature and it may be caused by both new methodologies arising and faster computers coming out. Many of the optimization techniques are based on natural or biological phenomena. This study put focus on enhancing the performace of Cuckoo Search (CS) among them since it has the least number of parameters to tune. The proposed enhancement can be achieved by applying surrogate-based optimization at every cycle of CS, which fortifies the exploitation capability of the original method. The enhanced algorithm has been applied several engineering design problems with constraints. The proposed method shows comparable or superior performance to the original method.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

Discrete Optimization of Plane Frame Structures Using Genetic Algorithms (유전자 알고리즘을 이용한 뼈대구조물의 이산최적화)

  • 김봉익;권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.25-31
    • /
    • 2002
  • This paper is to find optimum design of plane framed structures with discrete variables. Global search algorithms for this problem are Genetic Algorithms(GAs), Simulated Annealing(SA) and Shuffled Complex Evolution(SCE), and hybrid methods (GAs-SA, GAs-SCE). GAs and SA are heuristic search algorithms and effective tools which is finding global solution for discrete optimization. In particular, GAs is known as the search method to find global optimum or near global optimum. In this paper, reinforced concrete plane frames with rectangular section and steel plane frames with W-sections are used for the design of discrete optimization. These structures are designed for stress constraints. The robust and effectiveness of Genetic Algorithms are demonstrated through several examples.

Methods of pairwise comparisons and fuzzy global criterion for multiobjective optimization in structural engineering

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.17-30
    • /
    • 1998
  • The method of pairwise comparison inherently contains information of ambiguity, fuzziness and conflict in design goals for a multiobjective structural design. This paper applies the principle of paired comparison so that the vaguely formulated problem can be modified and a set of numerically acceptable weight would reflect the relatively important degree of multiple objectives. This paper also presents a fuzzy global criterion method ($FGCM_{\lambda}$) included fuzzy constraints that coupled with the objective weighting rank obtained from the modified pairwise comparisons for fuzzy multiobjective optimization problems. Descriptions in sequence of this combined method and problem solving experiences are given in the current article. Multiobjective design examples of truss and mechanical spring structures illustrate this optimization process containing the revising judgement techniques.

A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA (Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구)

  • Bae, H.G.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.