• Title/Summary/Keyword: glycogen synthase

Search Result 115, Processing Time 0.023 seconds

Regulation of CCAAT/enhancer Binding Protein- alpha in Ultraviolet B Responses Involves the Cooperation of p53 and Glycogen Synthase Kinase-3 (자외선 B조사시 p53와 glycogen synthase kinase-3에 의한 CCAAT/enhancer binding protein alpha의 발현조절)

  • Yoon Kyung Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.3 s.50
    • /
    • pp.229-235
    • /
    • 2005
  • 태양광선,특히 자외선 B에 대한 환경적 노출은 편평세포암과 기저세포암을 포함하는 흑색선종 이외의 피부암과 크게 관련된다고 알려져 있다. 염기 류신 지퍼계 전사조절인자인 CChAT/enhancer binding protein-alpha는 표피 각질형성세포에서 다량으로 발현되었고, 각질형성세포의 증식을 억제하며 피부암 발생을 억제하는 유전자로서의 역할이 암시된 바 있다. 최근 자외선 B가 각질형성세포에서 p53에 의한 CCAAT/enhanrer binding protein-alpha의 발현을 강력하게 유도한다는 것이 보고되었다. 이러한 CCAAT/enhancer binding protein-alpha 단백질 발현의 유도는 세포 성장 억제 세포고사와 함께 일어났다. 이 연구는 glycogen synthase kinase-3 길항제가 자외선 B에 의한 CCAAT/enhancer binding protein-alpha 유도를 억제하며 변이 kinase-불활성 GSK의 강제 발현은 자외선 B가 CCAAT/enhancer binding protein-alpha전사조절부위 활성의 증가를 억제한다는 것을 보여주었다. 즉 자외선 B에 의한 CCAAT/enhancer binding protein-alpha의 유도가 p53과 활성 glycogen synthase kinase-3에 의한 것이라는 것을 증명하였다.

Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts

  • Xiong, Qi;Deng, Chang-Yan;Chai, Jin;Jiang, Si-Wen;Xiong, Yuan-Zhu;Li, Feng-E;Zheng, Rong
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • PI(3,4,5)$P_3$ produced by the activated PI3-kinase is a key lipid second messenger in cell signaling downstream of insulin. Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5) $P_3$ to PI(3,4)$P_2$, negatively regulates the insulin-induced glycogen synthesis in skeletal muscle. However the mechanism by which this occurs remains unclear. To elucidate the function of SKIP in glycogen synthesis, we employed RNAi techniques to knockdown the SKIP gene in differentiating C2C12 myoblasts. Insulininduced phosphorylation of Akt (protein kinase B) and GSK-3$\beta$ (Glycogen synthase kinase), subsequent dephosphorylation of glycogen synthase and glycogen synthesis were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/ GSK-3$\beta$/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes.

The functional roles of plant glycogen synthase kinase 3 (GSK3) in plant growth and development (식물의 생장 및 발달과정에서 Glycogen synthase kinase 3 (GSK3) 유전자의 역할)

  • Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The biological roles of glycogen synthase kinase 3 (GSK3) proteins have long been extensively explored in eukaryotic organisms including fungi, animals and plants. This gene family has evolutionary well conserved kinase domain and shares similar phosphorylation properties to their substrate proteins. However, their specific biological roles are surprisingly distinct in different organisms. GSK3s play key role in key regulating the cytoskeleton and metabolic processes in animal systems, but plant GSKs are involved in quite different processes, such as flower development, brassinosteroid signaling, abiotic stresses, and organogenesis. In particular, recent studies have reported the critical multiple functions of BIN2 and its related paralogues plant GSK3s during organogenesis via connecting hormonal or developmental programs. In this review, we outline the recent understanding in the versatile functions related in physiological and biochemical relevance, which are mediated by plant GSK3s in various cellular signaling.

Clinical Phenotypes and Dietary Management of Hepatic Glycogen Storage Disease Type 0 (간 0형 당원축적병의 임상 표현형과 식사관리)

  • Young-Lim Shin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.8-14
    • /
    • 2023
  • The hepatic glycogen storage disease type 0 (GSD type 0) is an autosomal recessive disorder caused by a deficiency of hepatic glycogen synthase encoded by the glycogen synthase 2 (GYS2) gene, leading to abnormal synthesis glycogen. The clinical findings of GSD type 0 are hyperketotic hypoglycemia at fasting state and accompanying postprandial hyperglycemia and hyperlactatemia. GSD type 0 has only been reported in a very small number so far, and the diagnosis is likely to be missed because symptoms are mild, severe hypoglycemia is rare or asymptomatic, or symptoms gradually disappear with age. Essential management strategies include feeding high-protein meals to stimulate gluconeogenesis, frequent meals to prevent hypoglycemia during the day and feeding complex carbohydrates such as uncooked cornstarch to slowly release glucose during nignt. GSD type 0 has a good prognosis, with appropriate treatment, normal growth can be achieved and no complications occur. Significant hypoglycemia occurs less common in adulthood, but ongoing dietary management may be necessary.

  • PDF

A CoMFA Study of Glycogen Synthase Kinase 3 Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a promising target in drug discovery. It is involved in multiple cellular processes and associated with the pathogenesis of several diseases. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of GSK-3 inhibitors to understand the structural basis for inhibitory activity. Comparative molecular field analysis (CoMFA) method was used to derive 3D-QSAR models. A reliable CoMFA model was developed using ligand-based alignment scheme. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.594 and a non-cross-validated correlation coefficient ($r^2$) of 0.943. Robustness of the model was checked by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel compounds with enhanced GSK-3 inhibitory activity.

[Retracted] Epinephrine Control of Glycogen Metabolism in Glycogen-associated Protein Phosphatase PP1G/RGLKnockout Mice

  • 김종화;Anna A. DePaoli-Roach
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • The glycogen-associated protein phosphatase (PP1G/$R_{GL}$) may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and $R_{GL}$ knockout mice. The administration of epinephrine increased blood glucose levels from 200±20 to 325±20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24±0.04 to 0.10±0.02 in the wild-type, and from 0.17±0.02 to 0.06±0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21±0.04 to 0.65±0.07 and from 0.30±0.04 to 0.81±0.06 in the epinephrine trated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27%) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, $R_{GL}$ is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.

Vitamin A Improves Hyperglycemia and Glucose-Intolerance through Regulation of Intracellular Signaling Pathways and Glycogen Synthesis in WNIN/GR-Ob Obese Rat Model.

  • Jeyakumar, Shanmugam M.;Sheril, Alex;Vajreswari, Ayyalasomayajula
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.172-183
    • /
    • 2017
  • Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

The effects of endurance training and L-arginine supplementation on nitric oxide production, muscle glycogen concentration, and endurance performance

  • Choi, Sung-Keun;Park, Sok;Lee, Cheon Ho
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The purpose of this study was to examine the effects of endurance training and prolonged L-arginine supplementation on blood glucose, blood insulin, muscle glycogen, muscle glycogen synthase (GS), muscle nitric oxide (NO), muscle nitric oxide synthase (NOS), endurance performance. We equally divided 36 Sprague-Dawley mice to be distributed into control group, L-NMMA treated group and L-arginine treated group. The L-arginine treated group and L-NMMA treated group consumed 10 mg/kg/day of L-arginine and 5 mg/kg/day of L-NMMA for 6 weeks period. Mice of control group, L-arginine treated group, and L-NMMA treated groups performed swimming exercise training for 60 min once a day, 5 days per week for 6 weeks. Blood glucose had tendency to increase in L-arginine treated group than the control group, and insulin significantly increased in L-arginine treated group than the control group. L-arginine treated group showed significant increase in glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to the control group. Whereas L-NMMA treated group showed the lowest glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to control group and L-arginine treated group. Exhaustive swimming time had tendency to increase in L-arginine treated group compared to the value for control group. These reults indicate that endurance training and prolonged L-arginine supplementation appear to be effective in exhancing nitric oxide production, glycogen concentration and endurance performance.

Insulin Resistance in Late Pregnant Rats (임신 후반기 흰쥐의 인슐린 저항성과 그 기전)

  • Chun, Myung-Heup;Kim, Yong-Woon;Park, So-Young;Kim, Jong-Yeon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.319-330
    • /
    • 1995
  • The influence of normal late pregnancy on insulin action and insulin secretion was studied in the Sprague-Dawley female rats. On 20th day after mating, intravenous glucose tolerance test(IVGTT) was performed in non pregnant control and pregnant rats. As results of IVGTT, glucose disappearance rate was not significantly different in both groups, but secretory response of insulin was significantly(p<0.05) increased in pregnant rat. And the ratio of insulin/glucose was significantly higher in pregnant rats, which means existence of insulin resistance. These insulin resistance was overcomed by increased secretory response of pancreatic insulin. Insulinogenic index(${\Delta}$ insulin/glucose - 5 min) was highly significantly (r=0.62, p<0.01) correlated with progesterone concentration. Glycogen level and amounts of $^{14}C$-glucose incorporated into glycogen after IVGTT were significantly(p<0.05) decreased in the liver, but were not changed significantly in soleus. Glycogen synthase activity of soleus and liver was not differ significantly in the both groups. Insulin binding at varying concentrations of insulin to crude membrane of pregnant liver was not significantly different from control. In conclusions, although these pregnant rats were normal glucose tolerance due to increased secretory response of insulin, that was correlated with progesterone concentration, pregnant rat had insulin resistance. The mechanisms of insulin resistance were not related to defect of insulin binding phase and glycogen synthase, but suggest pre-receptor and/or postreceptor phase.

  • PDF

Protein Fraction from Panax ginseng C.A. Meyer Results the Glycogen Contents by Modulating the Protein Phosphorylation in Rat Liver (고려홍삼 단백질분획의 쥐간 단백질 인산화 조절에 의한 글리코겐 함량조절)

  • Park, Hwa-Jin;Rhee, Man-Hee;Park, Kyeong-Mee;No, Young-Hee;Lee, Hee-Bong
    • Journal of Ginseng Research
    • /
    • v.18 no.2
    • /
    • pp.102-107
    • /
    • 1994
  • When at liver homogenates were incubated with 1mM $CCl_4$ for five min, glycogen level was decreased, while treatment with protein fraction $G_4$ increased the glycogen level. In addition $G_4$ inhibited the phosphorylation of 34 KD and 118 KD polypeptides induced by $CCl_4$. These protein were more strongly phosphorylated by $Ca^{2+}$/calmodulin-dependent kinase than by C-kinase. Since 34 KD polypeptide was solely phosphorylated by NaF (50mM), an inhibitor of both glycogen syntheses and phosphoprotein phosphates, it is inferred that 3 KD polypeptide is glycogen synthase-likd protein. Because glycogen synthesis is inhibited by phosphorylation of $Ca^{2+}$-dependent glycogen syntheses, it is suggested that $G_4$ increased liver glycogen level by inhibiting phosphorylation of 34 KD polypeptide which is thought to glycogen syntheses-like protein.

  • PDF