• 제목/요약/키워드: glyoxalase I

검색결과 9건 처리시간 0.023초

미생물에 있어서 글리옥살라아제 I의 효소학적, 유전학적 고찰 (Enzymatic and Genetic Aspects of Glyoxalase I in Microorganisms)

  • 이해익
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.103-108
    • /
    • 1990
  • 효모나 세균을 이용한 메칠글리옥살 대사의 효소학적, 유전학적 연구로부터 생물체들은 메칠글리옥살의 해독을 위하여 보편적이고 다양한 경로를 가지고 있음을 알았다. 이들 대사경로 가운데 글리옥살라아제 I은 메칠글리옥살 해독에 있어서 가장 중요한 경로이다. 글리옥살라아제 I의 분자구조는 효소의 기원에 따라 크게 다르게 나타났고, 아연 이온은 효소활성에 필수적이었다. Pseudomonas putida의 글리옥살라아제 I은 유전자는 메칠글리옥살리아의 제거제로 작용하였고, 또한 세균의 크기를 조절하는 역활을 가지고 있었다. 본 유전자의 염기배열과 정제효소의 아미노 말단을 비교해 본 결과 아미노 말단의 메치오닌 잔기는 번역 후 제거 됨을 알았다. 그밖에 글리옥살라아제 I의 생리학적 역활에 대해서도 논의하였다.

  • PDF

Purification and Characterization of Glyoxalase I from Chlamydomonas reinhardtii

  • Hwang, Sun-Jun;Chai, Young-Gyu
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.294-299
    • /
    • 1996
  • Glyoxalase I (Ee 4.4.1.5, lactoylglutathione lyase) from Chlamydomonas reinhardtii was purified to homogeneity by ammonium sulfate fractionation, anion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography on S-hexylglutathione agarose. The purified enzyme was judged to be homogeneous on SDS-PAGE, and consisted of a single polypeptide chain with a relative molecular weight of 24,000. The enzyme was most active at $40^{\circ}C$ and pH 7.5. It was catalytically most active with methylglyoxal as substrate. A number of properties of the Chlamydomonas glyoxalase I enzyme, such as substrate specificity, molecular mass, kinetic parameters, pi, metal ion effect, have been determined and compared with those reported for preparations from other sources. It had somewhat different characteristics from mammalian enzymes.

  • PDF

Cloning and Characterization of a Glyoxalase I Gene from the Osmotolerant Yeast Candida magnoliae

  • Park, Eun-Hee;Lee, Dae-Hee;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.277-283
    • /
    • 2011
  • Glyoxalase I catalyzes the conversion of methylglyoxal to S-D-lactoylglutathione in the presence of glutathione. The structural gene of glyoxalase I (GLO1) was cloned from an osmotolerant yeast, Candida magnoliae, which produces a functional sweetener, erythritol, from sucrose. DNA sequence analysis revealed that the uninterrupted open reading frame (ORF) of C. magnoliae GLO1 (CmGLO1) spans 945 bp, corresponding to 315 amino acid residues, and shares 45.2% amino acid sequence identity to Saccharomyces cerevisiae Glo1. The cloned ORF in a multicopy constitutive expression plasmid complemented the glo1 mutation of S. cerevisiae, confirming that it encodes Glo1 in C. magnoliae. The responses of CmGLO1 to environmental stresses were different from those of S. cerevisiae, which only responds to osmotic stress. An enzyme activity assay and reverse transcription polymerase chain reaction revealed that the expression of CmGLO1 is induced by stress inducers such as methylglyoxal, $H_2O_2$, KCl, and NaCl. The GenBank Accession No. for CmGLO1 is HM000001.

Comparative Investigation of Glutathione S-Transferases, Glyoxalase-I and Alliinase Activities in Different Vegetable Crops

  • Hossain, Md Daud;Rohman, Md Motiar;Fujita, Masayuki
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.19-26
    • /
    • 2007
  • Glutathione S-transferases(GSTs, EC 2.5.1.18), glyoxalase-I(EC 4.4.1.5) and alliin lyase(alliinase, EC 4.4.1.4) are important enzyme systems in plant bodies. The first two are mainly detoxifying enzymes that utilize glutathione(GSH) in the defense mechanism, and the last one is mainly involved in secondary metabolism and relevant to sulfur compounds derived from GSH. The activities of the three enzymes have been investigated in soluble extracts of vegetable crops, including pumpkin, cabbage, broccoli, radish, carrot, potato, sweet potato, mungbean, and onion. GST activities were detected in all of the vegetables, and the extract of onion bulb exhibited the highest specific activity(648 nmol/min/mgP). The putative GSTs of most of the vegetables were found to be induced by ethanol. The activities of GSTs in onion bulb were found to be markedly inhibited by S-hexyl glutathione and were also inhibited by S-butyl glutathione and S-propyl glutathione. The anti-CmGSTF1 antiserum recognized a thick band for putative onion GST. The estimated glyoxalase-I activity level was also high in onion bulb(4540 nmol/min/mgP), indicating that the thick band detected by Western blot analysis might result from partial recognition of glyoxalase-I by the antiserum. The specific activities for glyoxalase-I were moderate in radish and carrot, and the extracts of other vegetables had rather low levels of activities. The extract of onion also showed the highest specific activity level for alliinase(2069nmol pyruvate/mgP). The extracts of other vegetables also had alliinase activities, although the estimated values were much lower than that of onion.

  • PDF

Pleurotus ostreatus에서 분리된 Glyoxalase I의 특성 (Purification and Characterization of Glyoxalase I from Pleurotus ostreatus)

  • 김성태;양갑석;석영재;허원기;강사욱
    • 미생물학회지
    • /
    • 제32권4호
    • /
    • pp.315-321
    • /
    • 1994
  • Pleurotus ostreatus로부터 glyoxalase I(S-lactoyl-glutathione methylglyoxal lyase, EC 4.4.1.5)이 S-hexylglutathione affinity chromatography, Sephadex G-150 gel permeation chromatography, DEA-sepharose A-50 CL-6B ion exchange chromatography를 통해 순수 분리되었다. 이 결과, 전체 활성도의 21.7% fmf 수확하였으며, 분리 배수는 2,294 배 이었다. Gel filtration chromatography로 측정한 효소의 분자량은 34 kDa이며, SDS-PAGE 결과 본 효소는 분자량 17 kDa인 동일한 소단위체 두 개로 구성된 이합체라고 생각된다. Methylglyoxal과 phenylglyoxal에 대한 $K_m$ 값은 각각 0.39 mM 과 0.22 mM 이며 L-xylosone과 hydroxypyruvaldehyde에 대해서도 강한 친화력을 보여주었고, pH 6.5~7.5, $35~45^{\circ}C$에서 활성도가 가장 높았다. 이 효소의 반응 과정을 핵자기공 명분광법으로 분석한 결과, 분자내의 양성자 전달과정이 뚜렷이 관찰되었다.

  • PDF

γ-Aminobutyric acid (GABA) confers chromium stress tolerance in mustard (Brassica juncea L.) seedlings by modulating the antioxidant defense and glyoxalase systems

  • Al Mahmud, Jubayer;Hasanuzzaman, Mirza;Nahar, Kamrun;Rahman, Anisur;Hossain, Md. Shahadat;Fujita, Masayuki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.235-235
    • /
    • 2017
  • Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 mM and 0.3 mM $K_2CrO_4$, 5 days) alone and in combination with GABA ($125{\mu}M$) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide ($H_2O_2$) content; superoxide ($O{_2}^{{\cdot}-}$) generation; lipoxygenase (LOX) activity], MG content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.

  • PDF

Screening of Genes Related to Methylglyoxal Susceptibility

  • Kim, In-Sook;Kim, Joon-Ho;Min, Bum-Chan;Lee, Chang-Han;Park, Chan-Kyu
    • Journal of Microbiology
    • /
    • 제45권4호
    • /
    • pp.339-343
    • /
    • 2007
  • Methylglyoxal (MG) is a reactive metabolite known to accumulate in certain physiological conditions. We attempted to isolate genes associated with this metabolite by genome-wide mutagenesis with TnphoA derivative. After screening on methylglyoxal-containing plate, we obtained insertions in three different genes, ydbD, yjjQ, and yqiI, which gave rise to reproducible MG-sensitive phenotypes in glyoxalase-deficient strain. In addition to its MG sensitivity, the insertion in yqiI exhibited an impaired motility resulting from a reduced flagellar expression.

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • 제5권4호
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

제주 재래마아 쓰시마 재래마의 혈액내 단백질의 다형 (Polymorphisms of Blood Proteins In Cheju Native Horses and Tsushima Native Horses)

  • 오유성;오문유;김세재;김기옥;고미희;모야박;양영훈
    • 한국동물학회지
    • /
    • 제38권3호
    • /
    • pp.324-329
    • /
    • 1995
  • 제주 재래마와 쓰시마 재래마 간의 유전적 유연관계를 16개 혈액 단백질 좌위의 유전적 다형현상을 분석하여 연구하였다. 두 지역의 재래마 집단에서 5개의 단백질 좌위를 제외한 11개 좌위에서는 유전적 다형현상을 보였다. 다형현상을 나타내는 좌위에서 분석된 유전자 빈도를 이용하여 평균 이형접합자 빈도를 분석한 결과 제주 재래마에서는 0.375로 쓰시마 재래마의 0.304 보다 다소 높게 나타났다. Nei방법에 의해 계산된 Da distance와 유전자 동일성은 각각 0.108과 0.868이었다. 본 연구결과와 이미 보고된 아메리카말 집단들에서의 결과를 이용하여 phylogenetic tree를 구성하여 본 결과 크게 세 개의 cluster를 이루었다. 즉 아메리카말 집단들이 하나의 cluster를 이루었고 제주 재래마 집단이 하나의 cluster를 이루었으며, 이 두 cluster는 현존 말의 기원으로 보는 몽고 야생마 cluster에서 분지됨을 알 수 있었다.

  • PDF