• Title/Summary/Keyword: goat milk components

Search Result 4, Processing Time 0.023 seconds

Comparative Monthly Analysis of Goat Milk Components by Individual Farms (우리나라 산양유의 농장별 및 계절별 성분 비교분석)

  • Ahn, Jong-Ho;Park, Woong-Yeoul
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.3
    • /
    • pp.321-330
    • /
    • 2008
  • In order to investigate any differences of the characteristics of goat milk according to seasons and individual farms, we analysed and compared the components of fat, protein lactose, total solid, solid-not fat (SNF) and cells of goat milk collected from 8 individual farms between December 2006 and June 2007. Milk fat content has shown higher values in December to March than in other seasons, and SNF appeared especially higher in February. However, lactose content was not different according to seasons. Regional differences of milk components were not big at all either. Milk components from goats were in general similar to cow milk except a little lower fat content, but appeared higher than mare milk. Production of goat milk is in difficulty in aspects of balancing demand and supply due to its seasonal reproductive system. For the future of goat milk industry, it is necessary to develop various products of longer storage life.

  • PDF

miR-380-3p promotes β-casein expression by targeting αS1-casein in goat mammary epithelial cells

  • Ning Song;Jun Luo;Lian Huang;Xiaoying Chen;Huimin Niu;Lu Zhu
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1488-1498
    • /
    • 2023
  • Objective: αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). Methods: αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. Results: Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region. Conclusion: miR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.

A fast and reliable polymerase chain reaction method based on short interspersed nuclear elements detection for the discrimination of buffalo, cattle, goat, and sheep species in dairy products

  • Cosenza, Gianfranco;Iannaccone, Marco;Gallo, Daniela;Pauciullo, Alfredo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.891-895
    • /
    • 2019
  • Objective: Aim of present study was the set up of a fast and reliable protocol using species-specific markers for the quali-quantitative analysis of DNA and the detection of ruminant biological components in dairy products. For this purpose, the promoter of the gene coding for the ${\alpha}$-lactoalbumin (LALBA) was chosen as possible candidate for the presence of short interspersed nuclear elements (SINEs). Methods: DNA was isolated from somatic cells of 120 individual milk samples of cattle (30), Mediterranean river buffalo (30), goat (30), and sheep (30) and the gene promoter region (about 600/700 bp) of LALBA (from about 600 bp upstream of exon 1) has been sequenced. For the development of a single polymerase chain reaction (PCR) protocol that allows the simultaneous identification of DNA from the four species of ruminants, the following internal primers pair were used: 5'-CACTGATCTTAAAGCTCAGGTT-3' (forward) and 5'-TCAGA GTAGGCCACAGAAG-3' (reverse). Results: Sequencing results of LALBA gene promoter region confirmed the presence of SINEs as monomorphic "within" and variable in size "among" the selected species. Amplicon lengths were 582 bp in cattle, 592 bp in buffalo, 655 in goat and 729 bp in sheep. PCR specificity was demonstrated by the detection of trace amounts of species-specific DNA from mixed sources ($0.25ng/{\mu}L$). Conclusion: We developed a rapid PCR protocol for the quali-quantitative analysis of DNA and the traceability of dairy products using a species-specific marker with only one pair of primers. Our results validate the proposed technique as a suitable tool for a simple and inexpensive (economic) detection of animal origin components in foodstuffs.

Major Components of Caprine Milk and Its Significance for Human Nutrition (산양유의 조성과 그 식품영양학적 의의)

  • Kim, Hyo-Hee;Park, Young-Seo;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • Recently, infant formula products made of caprine milk have gained popularity, mainly because the nutritional composition of caprine milk is similar to that of human milk. In addition, caprine milk is considered to be better than bovine milk in terms of nutrient composition and easier digestion. Compared to bovine milk, caprine milk contains more ${\beta}$-casein, but less ${\alpha}$S1-casein. While the lactose concentration of both bovine and caprine milk is almost the same, a content of total oligosaccharides in caprine milk was approximately five to eight times higher than that in bovine milk. However, as the dairy goat industry in Korea is in a nascent stage of milk production and further processing, many nutritional advantages of caprine milk over bovine milk are not fully conveyed to general consumers. It is recommended that scientific research regarding the nutritional benefits of caprine milk needs to be conducted urgently, owing to the increasing domestic sales of infant formula products made of caprine milk.