• Title/Summary/Keyword: grape skin

Search Result 93, Processing Time 0.03 seconds

Effect of dietary supplementation of grape skin and seeds on liver fibrosis induced by dimethylnitrosamine in rats

  • Shin, Mi-Ok;Moon, Jeon-Ok
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.369-374
    • /
    • 2010
  • Grape is one of the most popular and widely cultivated fruits in the world. Although grape skin and seeds are waste product of the winery and grape juice industry, these wastes contain large amounts of phytochemicals such as flavonoids, phenolic acids, and anthocyanidins, which play an important role as chemopreventive and anticancer agents. We evaluated efficacies of grape skin and seeds on hepatic injury induced by dimethylnitrosamine (DMN) in rats. Treatment with DMN significantly increased levels of serum alanine transaminase, aspartate transaminase, alkaline phosphatase, and bilirubin. Diet supplementation with grape skin or seeds (10% daily for 4 weeks) prevented these elevations. The grape skin and seeds also restored serum albumin and total protein levels, and reduced the hepatic level of hydroxyproline and malondialdehyde. Furthermore, grape skin and seeds reduced DMN-induced collagen accumulation, as estimated by histological analysis of liver tissue stained with Sirius red. Grape skin and seeds also reduced hepatic stellate cell activation, as assessed by ${\alpha}$-smooth muscle actin staining. In conclusion, grape skin and seeds exhibited in vivo hepatoprotective and antifibrogenic effects against DMN-induced liver injury, suggesting that grape skin and seeds may be useful in preventing the development of hepatic fibrosis.

Grape skin improves antioxidant capacity in rats fed a high fat diet

  • Lee, Su-Jin;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.279-285
    • /
    • 2009
  • This study was conducted to investigate the effect of dietary grape skin on lipid peroxidation and antioxidant defense system in rats fed high fat diet. The Sprague-Dawley rats were fed either control (5% fat) diet or high fat (25% fat) diet which was based on AIN-93 diet for 2 weeks, and then they were grouped as control group (C), control + 5% grape skin group (CS), high-fat group (HF), high fat + 5% grape skin group (HFS) with 10 rats each and fed corresponding diets for 4 weeks. The hepatic thiobarbituric acid reacting substances (TBARS) were increased in high fat group as compared with control group, but reduced by grape skin. The serum total antioxidant status, and activities of hepatic catalase and superoxide dismutase, xanthine oxidase and glucose-6-phosphatase were increased by supplementation of grape skin. Glutathione peroxidase activity was significantly higher in CS group than in C group. Grape skin feeding tended to increase the concentration of total glutathione, especially in control group. The ratio of reduced glutathione to oxidized glutathione was lower in high fat groups than in control groups. The ratio was increased by dietary supplementation of grape skin in control group. These results suggest that dietary supplementation of grape skin would be effective on protection of oxidative damage by lipid peroxidation through improvement of antioxidant defense system in rats fed high fat diet as well as rats with low fat diet.

Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

  • Zhang, Xian-Hua;Huang, Bo;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 2012
  • Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.

Effect of Grape Skin on Physicochemical and Sensory Characteristics of Ground Pork Meat (포도과피 첨가가 분쇄돈육의 이화학적·관능적 특성에 미치는 영향)

  • Choi, Gang-Won;Lee, Jong-Wook
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.290-298
    • /
    • 2016
  • Purpose: This study aimed to investigate the effect of grape skin on the physicochemical properties and sensory score of ground pork meat. Methods: Four types of ground pork were evaluated: T0 without grape skin, T1 with 0.3% grape skin, T2 with 0.7% grape skin, and T3 with 1.0% grape skin. Results: There was no significant group wise difference in VBN content, L-value, b-value, chemical composition of raw and cooked meat, cooking yield, water holding capacity, moisture retention, fat retention, hardness, springiness, cohesiveness, gumminess, chewiness, taste, texture, juiciness, or palatability. Total polyphenol content was highest in T3, and DPPH radical scavenging activity was highest in T2 and T3 (p<0.001). The pH was highest in T0, and was lowest in T3 (p<0.001). The a-value of T2 and T3 were significantly higher than that of T0 (p<0.05). Flavor was highest in T2 among samples (p<0.01). Conclusion: The study results suggest that grape skin may be a useful ingredient in ground pork meat in terms of antioxidant potential, color and flavor.

Fabric Dyeing Using Anthocyan Pigment from Grape Skin (포도과피의 안토이안 색소를 이용한 직물 염색)

  • 고영실;이혜자;유혜자
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.11
    • /
    • pp.127-135
    • /
    • 2000
  • The natural dyestuff, grape skin dye was manufactured from grape skin by boiling in 0.1% HCI solution, eliminating the sugar and powdering in freeze dryer. Cotton, wool, silk and nylon fabrics were dyed under several conditions using the manufactured grape skin dye to investigate the dyeability and color fastness. Dyeing was operated in acidic dyebath of pH 4 because the grape skin is anionic. The color of dyed fabrics were affected on temperature of dyeing solution. Under 80$\^{C}$, the color of dyed fabrics were red or violet, but changed to brown in laundering. Above 100$\^{C}$, the color were brown and safe in laundering. Dyeabilities on wool, silk, and nylon fabrics were good, especially silk fabrics were dyed deeper than others. Dyeability was developed with concenturation of dyeing solution. All the dyed fabrics were excellent in color fastness to crocking and laundering. Light fastness was low to moderate. The light fastness of dyed nylon fabrics were as poor as grade 1, but they could be improved to grade 3∼4 by aftertreatment with gallic acid.

  • PDF

Characterization of phenolic compounds biosynthesized in pink-colored skin of Japanese indigenous Vitis vinifera cv. Koshu grape

  • Kobayashi, Hironori;Suzuki, Yumiko;Ajimura, Kosei;Konno, Tomonori;Suzuki, Shunji;Saito, Hiroshi
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • Vitis vinifera cv. Koshu is a traditional grape cultivar that has been grown for centuries in Japan. The Koshu grape has pink-colored skin and Koshu wines have slight astringency. We demonstrated for the first time the characterization of hydroxycinnamic acids, flavan-3-ols, and flavonoids in Koshu grape using high-performance liquid chromatography and liquid chromatography-mass spectrometry. The gross weight of phenolic compounds excluding anthocyanins and proanthocyanidins in Koshu grape at harvest was higher than those in Sauvignon Blanc, Chardonnay, and Merlot grapes. In addition, hydroxycinnamic acid and monomeric flavonol contents in Koshu grape were also higher than those in the other grape cultivars. Transcription analysis of cinnamic acid 4-hydroxylase, p-coumarate 3-hydroxylase, caffeate methyltransferase, and flavonol synthase genes indicated high accumulation of hydroxycinnamic acids and flavonols in Koshu grape skin compared with the other cultivars. These findings obtained by chemical and molecular approaches partially explained the phenolic characteristics and the peculiar astringency of Koshu grape.

Molecular characterization of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during grape development

  • Kobayashi, Hironori;Fujita, Keiko;Suzuki, Shunji;Takayanagi, Tsutomu
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.225-241
    • /
    • 2009
  • We investigated the transcriptional profiles of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during ripening. In leaf, 64 genes were abundantly transcribed at the end of $v{\acute{e}}raison$ (14 weeks post-flowering), whereas the expression of 61 genes was upregulated at the end of ripening (20 weeks post-flowering). In berry skin, 67 genes were abundantly transcribed at the end of $v{\acute{e}}raison$, whereas the expression of 86 genes was upregulated at the end of ripening. Gene expression associated with biological processes was activated in both tissues at the end of ripening. The expression of genes associated with photosynthesis, sugar synthesis, anthocyanin synthesis, cinnamic acid synthesis, and amino acid metabolism was observed in leaf and berry skin during ripening, together with the accumulation of sugars, anthocyanins, cinnamic acids, and amino acids. Transcripts of AUX/IAA family proteins that repress the activities of auxin-induced proteins were expressed in berry skin at the end of $v{\acute{e}}raison$. Transcripts of genes related to the ubiquitin-proteasome system that degrades AUX/IAA family proteins were abundantly expressed in berry skin at the end of ripening, suggesting that the expansion of skin cells at $v{\acute{e}}raison$ is suppressed by AUX/IAA family proteins, and that the ubiquitin-proteasome system induces the expansion of skin cells during ripening by degrading AUX/IAA family proteins. These transcriptional profiles, which provide new information on the characteristics of 'Koshu' grapevine during ripening, may explain the unique characteristics of 'Koshu' grape in comparison with those of European grapes used for winemaking, and may contribute to the improvement of 'Koshu' grape quality.

The Antioxidant Activity of Various Cultivars of Grape Skin Extract

  • Yoo, Mi-Ae;Kim, Jin-Sook;Chung, Hae-Kyung;Park, Won-Jong;Kang, Myung-Hwa
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.884-888
    • /
    • 2007
  • The aim of this study was to analyze the antioxidant properties of different cultivars of grape skin extract in an in vitro system. The extracts were prepared from eight grape cultivars: 'Campbell Early' (CE), 'Kyoho' (K), 'New Kyoho' (NK), 'Muscat of Alexandria' (MOA), 'Seibel' (S), 'Morgen Schow' (MS), 'Gold Finger' (GF), and 'Meru' (M). The total phenolic acid contents were highest in MS and K. Resveratrol content was high in NK (50.88 mg/l g of coat), and quercetin content was significantly higher in K (0.68 mg/l g of coat) than in the other grape species (0.21-0.44 mg/l g of coat). The K and MS grape species, in which total phenol content was comparatively high (K: $24.15\;{\mu}g/mL$, MS: $25.52\;{\mu}g/mL$), also showed a high level of electron donating activity (K, 53%; MS, 59%). The hydrogen radical scavenging activity of M (50.36%) was significantly higher than the other grape species, including the S (50.21%), MS (49.43%), and K (49.06%) cultivars. Antioxidant activity varied depending on grape species, but overall it was highest in the MS and K cultivars.

Effect of skin and seed of Grape and on Dimethylnitrosamine-Induced Liver Damage in Rats

  • Shin, Mi-Ok;Shin, Ji-Young;Yoon, Sik;Moon, Jeon-Ok
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.181.1-181.1
    • /
    • 2003
  • Polyphenolic compounds have been reported to exhibit a wide range of pharmacological properties. In this study. we investigated the hepatoprotective effect of skin and seed of grape which contain abundant polyphenol compounds on dimethylnitrosamine(DMN)-induced liver damage in rats. Ingestion of skin and seed of grape (10% diet, daily for 4 weeks) into the DMN-treated rats remarkably prevented the elevation of serum alanine transaminase, aspartate transaminase and alkaline phosphatase, and bilirubin levels. (omitted)

  • PDF

Functional Cosmetic Characteristics of Grape Skin Extract (포도껍질 추출물의 기능성 화장품 소재 특성)

  • Shin, Eun Min;Kim, Ju Yeon;Park, Si Eun;Kim, Chang-Joon
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.306-314
    • /
    • 2021
  • Grape skins are a natural resource rich in antioxidants, but people only eat grape flesh and have discarded the skins. This study investigated the possibility of using grape skin extract as a raw material for functional cosmetics. The dried grape skin powder was put in distilled water and stirred for 1 h, and then the supernatant separated from the solid was used as an extract. The extract yield was 17.8 ~ 31.4%, and the total flavonoid and polyphenol contents in the extract were 1.8 ~ 2.5 mg-QE g-extract-1 and 16.9 ~ 20.3 mg-GAE g-extract-1, respectively. The extract effectively removed radicals of DPPH and ABTS, and the degree of scavenging increased with the concentration of the extract. The extract inhibited the collagen hydrolysis activity of collagenase, and the activity inhibition rate increased to 84.2% as the extract concentration increased. However, notable inhibition of tyrosinase by the extract was not found. As the extract of Chamaecyparis obtusa was added to the grape-skin extract, the tyrosinase inhibition rate increased, but the DPPH radical scavenging activity decreased. This study found that grape skin extract has a high antioxidant capacity and anti-wrinkle effect but a low whitening effect. However, by mixing the grape skin extract with the extract of C. obtusa in an optimal ratio, the whitening effect was improved with excellent antioxidant and anti-wrinkle effects.