• Title/Summary/Keyword: half-metallicity

Search Result 27, Processing Time 0.018 seconds

First-principles Study on the Half-metallicity and Magnetism of a Full Heusler Alloy, Co2HfSi, in Bulk State and at its (001) Surfaces

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.115-119
    • /
    • 2008
  • The authors predicted that $Co_2HfSi$, a $Co_2$-based full Heusler alloy, is being a half-metallic ferromagnet by first-principles calculations using the all electron full-potential linearized augmented plane wave method which adopts the generalized gradient approximation. The integer value of the calculated total magnetic moment of 2.00 ${\mu}_B$ per formula unit and a spin gap of 0.69 eV in spin down state confirmed the half-metallicity of bulk $Co_2HfSi$. For the $Co_2HfSi$(001) surface, we considered two possible surface terminations, namely, Co terminated and HfSi terminated surfaces. It was found that half-metallicity was retained at the HfSi-terminated surface but not at the Co-terminated surface. The magnetic moment of surface Co atoms in the Co-terminated surface was slightly lower than that of Co atoms in deep inner-layers, whereas the magnetic moments of Hf and Si atoms at the HfSi-terminated surface were almost same as those in deep inner-layers.

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

First-principles Study on the Half-metallicity and Magnetism for the Heusler Based Compounds of N(2-0.5n)O0.5nKCa (n=0~4) (호이슬러 구조 기반의 N(2-0.5n)O0.5nKCa (n = 0~4) 화합물의 반쪽금속성 및 자성에 대한 제일원리 연구)

  • Bialek, Beata;Lee, Jae Il
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.179-183
    • /
    • 2013
  • The half-metallicity and magnetism for compounds of the $N_{(2-0.5n)}O_{0.5}nKCa$ (n = 0~4), which was based on the $d^0$ Heusler half-metals of $N_2KCa$ and $O_2KCa$, were investigated by means of first-principles band calculation method. From the calculated total magnetic moments and the density of states, we found that these three compounds have the half-metallicity. The magnetic moments of the N and O atoms in these compounds were considerably increased compared to those of pure $N_2KCa$ and $O_2KCa$. The K atoms have a large negative magnetic moments. The relationship between the value of magnetic moments for each atom and density of states are discussed.

Half-metallic and Magnetic Properties of (001) Surfaces of KCaN2 Compound in full-Heusler Structure

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.375-379
    • /
    • 2013
  • The electronic and the magnetic properties of (001) surface of $KCaN_2$ half-metallic compound with full-Heusler structure are studied with the use of a full-potential linearized augmented plane wave method. Two possible terminations of the surface are considered and only the one with N atoms in the topmost layer is found to retain the half-metallic properties of the bulk. The magnetic properties of N-terminated surface are enhanced compared with the properties of the bulk. The calculated magnetic moments on the N atoms in the $KCaN_2$ are 1.26 ${\mu}_B$ in the bulk and 1.90 ${\mu}_B$ at the surface. The subsurface metal atoms are also slightly polarized. In the surface terminated with metal atoms, not only the half-metallicity is destroyed, but also the magnetic properties of the system are weakened.

First-principles Study on Half-metallicity and Magnetism for Zinc-blende CrS(001) Surface (Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성에 대한 제일원리 연구)

  • Byun, Y.S.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.257-260
    • /
    • 2005
  • We investigated the half-metallicity and magnetism for the zinc-blende CrS(001) surfaces by use of the full-potential linearized augmented plane wave (FLAPW) method. We considered two-types of (001) surfaces terminated by Cr (Cr-Term) and S (S-Term) atoms, respectively. From the calculated layer-by-layer density of states, it is found that both of the systems retain the half-metallicity at the (001) surfaces. The calculated magnetic moment ($4.07\;{\mu}_B$) for the CrS(S) atom in Cr-Term is enhanced considerably compared to the bulk value ($3.61\;{\mu}_B$) while that ($3.15\;{\mu}_B$) of the Cr(S-1) in S-Term is much reduced.

The Half-metallic Properties of (001) and (110) Surfaces of CsSe from the First-principles

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • We investigated the half-metallicity and magnetism at the (001) and (110) surfaces of CsSe in cesium chloride and zinc-blende structures by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. From the calculated local density of states, we found that all the surfaces preserve the half-metallicity of the bulk structures. The surfaces with a greater polarity have stronger ferromagnetic properties when terminated with Se atoms; the non-polar surfaces do not change their electronic or magnetic properties considerably as compared with the bulk structures.

The First-principles Calculations on the Half-metallic Properties of (001) and (110) Surfaces of Zinc-blende YC

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • We investigated the half-metallicity and magnetism at the (001) and (110) surfaces of YC in zinc-blende structure by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. From the calculated local density of states, we found that neither (001) nor (110) surface preserves the half-metallicity. While the magnetic moment of Y atom in the YC bulk is $0.116{\mu}_B$, it is $0.057{\mu}_B$ at the topmost layer of Y-terminated (001) surface. On the contrary, C-terminated (001) YC surface exhibits stronger magnetism than the bulk structure; the calculated magnetic moment on topmost C atom is $1.084{\mu}_B$, while that of C atom in the bulk structure is $0.423{\mu}_B$. The magnetic properties of the non-polar (110) YC surface are slightly enhanced as compared with the bulk structure.

Half-metallicity and Magnetism at the (001) Surfaces of the Quaternary Heusler Alloys CoFeCrZ (Z = Ga, Ge): A First-principles Study (4원 호이슬러 합금 CoFeCrZ(Z = Ga, Ge)의 (001) 표면에서의 자성과 반쪽금속성: 제일원리 계산 연구)

  • Kim, Dong-Chul;Lee, Jae Il
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, a first-principles study led to a prediction that quaternary Heusler compounds, CoFeCrZ (Z = Ga, Ge) are excellent half-metallic ferromagnets. In this study, we investigate the electronic and the magnetic properties at the (001) surfaces of CoFeCrGa and CoFeCrGe by means of the full-potential linearized augmented plane wave (FLAPW) method within generalized gradient approximation. We considered two types of surface termination: CoFe-terminated and CrZ-terminated surfaces, Z being either Ga or Ge. From the calculated total magnetic moments and the local density of states, we found that half-metallicity is not preserved for all the surfaces. But the calculated atomic density of states showed that CrGa-terminated surface of the CoFeCrGa is almost half-metallic. The magnetic moment of the Co, Fe, or Cr atoms at the surface or subsurface layers in each system had very different values.