• Title/Summary/Keyword: haptic stability

Search Result 43, Processing Time 0.021 seconds

A Study for the Effect of a Virtual Mass with a Low-Pass Filter on a Stability of a Haptic System (가상질량과 저주파통과필터에 의한 햅틱 시스템의 안정성 영역에 관한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2017
  • This paper presents the effects of a virtual mass with a low-pass filter on the stability boundary of a virtual spring in the haptic system. In general, a haptic system consists of a haptic device, a sampler, a virtual impedance model and zero-order-hold. The virtual impedance is modeled as a virtual spring and a virtual mass. However the high-frequency noise due to the sampling time and the quantization error of sampled data may be generated when an acceleration is measured to compute the inertia force of the virtual mass. So a low-pass filter is needed to prevent the unstable behavior due to the high-frequency noise. A finite impulse response (FIR) filter is added to the measurement process of the acceleration and the effects on the haptic stability are simulated. According to the virtual mass with the FIR filter and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. The maximum available stiffness to guarantee the stable behavior is reduced, but simulation results still show that the stability boundary of the haptic system with the virtual mass is larger than that of the haptic system without the virtual mass.

1-DOF Haptic Interface Controller Design considering Transparency and Robust Stability (투명성과 강인 안정성을 고려한 1자유도 햅틱 인터페이스 제어기 설계)

  • Eom, Gwang-Sik;Seo, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.213-219
    • /
    • 2000
  • In this paper, a controller design method is proposed for haptic interface considering transparency and robust stability. For this, a performance index for the transparency as performance measure is defined in the points of impedance matching and the optimal solution which is minimizing the performance index is obtained by solving H2 optimal problem. In haptic interface, the modeling uncertainties can be restricted to that of haptic device. To implement the robust stabilizing haptic controller to the uncertainties of haptic device, a robust stable condition using H$\infty$ norm from small gain theorem is proposed. To verify the effectiveness of the proposed haptic controller design scheme, numerical examples and experimental results are illustrated for virtual wall consisting of stiffness and damping factor.

  • PDF

Stability Analysis of a Haptic System with a First-Order-Hold Method (일차 홀드 방식의 반력 구현 시스템에 대한 안정성 해석)

  • Lee, Kyungno
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator (가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구)

  • ;Greg R. Luecke
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF

Nonlinear Virtual Coupling for Stable Haptic Interaction (안정된 햅틱 인터페이스를 위한 비선형가상커플링)

  • 이문환;이두용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.610-615
    • /
    • 2003
  • This paper proposes a nonlinear virtual coupling fur haptic interface, which offers better performance while maintaining stability of the system. The nonlinear virtual coupling is designed based on a human response model. This human response model exploits delay between the human Intention and the actual change of arm impedance. The proposed approach provides with less conservative constraints for the design of stable haptic interface, compared with the traditional passivity condition. This allows increased performance that is verified through experiments.

Networked Haptic Virtual Environments Based on Stability and Transparency (안정성과 투명성을 고려한 촉감기반 네트워크 가상환경)

  • Lee, Seok-Hee;Kim, Jong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.59-64
    • /
    • 2008
  • In this paper, stability and transparency analysis for client/server haptic-based networked virtual environment (NVE) is introduced. From this analysis the appropriate communication structure for the more stable and transparent haptic interactions can be derived. Also, it is possible to expect and compensate the quality deterioration of haptic interactions according to certain network conditions In order to verify the usefulness of the analysis, simple haptic-based NVE application is implemented. For the stability verification, the vibration or strange movement of haptic interface and virtual object are measured under various network states. In addition, the usefulness of the proposed transparency analysis and network delay compensation scheme is verified by comparing distorted and compensated force feedbacks with real force feedback.

  • PDF

Effects of Data-hold Methods on Stability of Haptic System (데이터 홀드 방식에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • This paper presents the effect of data-hold methods on stability of haptic system with a virtual wall. When a human operator interacts with virtual wall, the lager the stiffness of the virtual wall is, the more realistic the operator feels that the virtual wall is. However, if the stiffness of the virtual wall becomes extremely large, the system may be unstable. When a virtual wall is designed, it is necessary to analyze the maximum available stiffness to guarantee a stable haptic interaction. The simulation model in this paper is developed based on the haptic device model, sampler, a virtual wall model, and data hold methods to compute the maximum stiffness for stability. The effectiveness of the simulation is evaluated through comparing the results of previous studies with the results of this simulation. In addition, the effects of two data hold methods, that is, zero-order hold (ZOH) and first-order hold (FOH) on the stability are analyzed and the values of the maximum available stiffness are compared through the simulation.

  • PDF

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.