• Title/Summary/Keyword: hard shelled mussle

Search Result 1, Processing Time 0.018 seconds

Isolation and Purification of Antimicrobial Peptide from Hard-shelled Mussel, Mytilus coruscus (참담치(Mytilus coruscus) 유래 항균 펩타이드 분리 및 정제)

  • Oh, Ryunkyoung;Lee, Min Jeong;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;An, Cheul Min;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1259-1268
    • /
    • 2016
  • In this study, we investigated antimicrobial peptide from the acidified muscle extract of Mytilus coruscus, which mostly inhabits China, Japan, and Korea, to develop a natural product-derived antibiotics substitution in terms of its abuse and restriction. Antimicrobial peptide was purified by $C_{18}$ reversed-phase high-performance liquid chromatography and was detected as having a molecular mass of 6,701 Da by MALDI-TOF/MS. The N-terminal amino acid sequence of the purified peak was obtained from edman degradation, and 20 identified residues shown 100% identity with the N-terminus region of sperm-specific protein and protamine-like PL-II/PL-IV precursor of Mytilus californianus. We also identified 60 open-reading frame (ORF) encoding amino acids with 183 bp of purified peptide based on the obtained amino acid residues. The amino acid sequence of ORF showed 100% and the nucleotide sequence revealed 97.2% identity with the protamine-like PL-II/PL-IV precursor of Mytilus californianus. Synthesized antimicrobial peptide showed antimicrobial activity against gram-positive bacteria, including Bacillus cereus (minimal effective concentration [MEC], $20.8{\mu}g/ml$), Bacillus subtilis (MEC, $0.2{\mu}g/ml$), Streptococcus mutans (MEC, $0.2{\mu}g/ml$), gram-negative bacteria including Pseudomonas aeruginosa (MEC, $5.7{\mu}g/ml$), Escherichia coli (MEC, $2.6{\mu}g/ml$) and fungi, Candida albicans (MEC, $56.3{\mu}g/ml$). In addition, synthesized peptide showed stable activities under heat and salt conditions against gram-positive and gram-negative bacteria, but was inhibited by salt against only C. albicans. With these results, isolated peptide from M. coruscus could be an alternative agent to antibiotics for defending against pathogenic microorganisms, and helpful information to understand the innate immune system of marine invertebrates.