• Title/Summary/Keyword: hardness

Search Result 10,310, Processing Time 0.036 seconds

Study on the Hardness Measurement of Earthenware : Focusing on the Cup of the Baekje (토기의 경도측정법 연구: 백제시대 배(杯)류를 중심으로)

  • Moon, Eun-Jung;Kang, Hee-Jun;Kim, Su-Kyoung;Lee, Han-Hyoung;Hong, Jong-Ouk;Hwang, Jin-Ju
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • We have investigated the suitable measuring method and condition on the hardness testing for the earthenwares excavated from Poongnap mud castle in Hanseong Baekje period. The earthenwares which used on hardness testing have been classified according to Mohs hardness and external form and color. The Ultrasonic and Equotip testing method have used to the hardness testing on the surface of the earthenwares and the Rockwell and Micro-vickers testing methods have used to the hardness testing on the cross section of the earthenwares. As the results, the two methods applied to the surface of the earthenwares were very hard on the precise measurement and the measuring values were incompatible with the tendency classified according to Mohs hardness and external form and color. On the testing for the cross section of earthenware, the Rockwell-superficial hardness testing method was more suitable for the soft texture earthenware and highest reproducibility of the measuring value obtained at the test load and indentor are 15kgf and 1/16 “iron ball, respectively. The Micro-Vickers hardness testing method was suitable for the hard texture earthenware and highest reproducibility and accuracy of the measuring value obtained at the test load is 100gf. This results show strong possibility of progress on the classifying and comparing study for hardness of the earthenware and therefore active studies are expected on the field.

  • PDF

THE EFFECT OF FERMENTED FOODS ON THE COLOR AND HARDNESS CHANGE OF DENTURE BASE ACRYLIC RESINS (발효음식이 의치상레진의 색상 및 표면경도 변화에 미치는 영향)

  • Jeon, Yeol-Mae;Lim, Heon-Song;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.344-355
    • /
    • 2004
  • Statement of problem: For a long time, many of denture base acrylic resins have been used for edentulous and partial edentulous patients because of easy manipulation and good mechanical properties, but its esthetic aspect has not been commented enough. Denture base acrylic resins also has caused esthetic problems due to discoloration or staining as in esthetic restoration. Many researches and reports have treated the problems and accomplished esthetic improvement. But these researches and reports dealt with general food colors or beverages, not with fermented foods. Purpose: This study is designed to assess what fermented foods, such as soy sauce, gochujang, and toenjang that many of Koreans have taken in, influence on the color and hardness variation of denture base acrylic resins. Materials and methods: For the procedure, twelve disks per 4 denture base acrylic resins were fabricated with a thickness of 2mm and 16mm in diameter. Each seven specimen were measured for discoloration with spectrophotometer, while the others, five specimen, for surface hardness change with Barcol hardness tester, over time. Each 12 specimen were immersed into the 4 beakers of fermented foods(soy sauces, gochujangs, toenjangs, deionized water), and $L^{*},a^{*}$, and $b^*$ values were measured for the color difference$({\Delta}E^*)$, on the 1st, 7th, and 28th day with spectrophotometer, with the measurement of surface hardness change. Each data observed was processed statistically. Results: The findings are as follows; Discoloration 1. All of denture base resins was not influenced by the kind of fermented foods, except for $QC20^{(R)}$ 2. Soy sauce and red pepper paste caused more change for denture base resins than deionized water and soy bean paste, except for Perform$^{(R)}$ 3. Most significant change was shown in Lucitone 199$^{(R)}$, whereas Perform$^{(R)}$ results in the least change for all immersed solution, with no statistical significance. Hardness change 1. Barcol hardness values in deposited specimens have been changed low degree, but with significant statistical change according to the kind of food and duration. 2. Lucitone$^{(R)}$ 199 as significantly lower Barcol hardness value than others do. Conclusion: Based on the above results, it suggests that the habitual intake of fermented foods is not helpful for the color stability of denture base acrylic resins because Soy sauce and red pepper paste mainly caused discoloration and surface hardness change. Particularly $Lucitone199^{(R)}$ shows specific discoloration and low surface hardness values. Therefore, it is recommended giving caution patients with denture of $Lucitone199^{(R)}$ especially against the habitual intake of fermented foods like soy sauce and red pepper paste.

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.

Relationship between Hardness and Relative Ddensity in Sintered Metal Powder Compacts (금속분발소결체의 경도와 상대밀도 관계)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.168-174
    • /
    • 1998
  • In the present study, a method for measuring the relative density by the hardness measurement was proposed for sintered metal powder compacts. It is based on the indentation force equation, by which the relative density is related with the hardness, that was obtained by the finite element analysis of rigid-ball indentation on sintered metal powder compacts. For verifying the method, it was applied to prediction of density distributions in sintered and sintered-and-forged Fe-0.5%C-2%Cu powder compacts.

  • PDF

Hardness Correction Algorithm Applicable to Korea as Related to Aquatic Toxicity Variation for Heavy Metals (국내 적용가능한 중금속 수서독성에 대한 경도보정 알고리즘 연구)

  • An, Youn-Joo;Yang, Chang-Yong;Nam, Sun-Hwa
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.275-282
    • /
    • 2008
  • Water hardness is a significant parameter as related to aquatic toxicity of some heavy metals. Hardness dependent metals include cadmium, copper, chromium (III), nickel, lead, zinc and silver. Developed countries have applied the hardness correction procedure to derive the water quality criteria for protecting the aquatic organisms. In the present study, we investigated the hardness correction algorithms used in United States of America, European Union, Australia/New Zealand, and Canada, and analyzed the details associated with those algorithms. Toxicity values of heavy metals were definitely different after hardness correction for all of algorithms analyzed. We found that the hardness corrected toxicity values followed by the algorithms of USA and Australia/New Zealand were very similar or same, however they were slightly different for cadmium at the hardness less than 30 mg $CaCO_3\;L^{-1}$. Among the hardness correction algorithms studied, the algorithm used in Australia/New Zealand appears to be a good choice to apply in Korean situation due to its simplicity compared to the algorithm of USA.

Microstructures and Hardness Distributions of a Large-sized High Strength H-sectional Steel with Both V and Nb (V, Nb 첨가 고강도 대형 H 형강의 부위별 미세조직과 경도 분포)

  • Ha, Yangsoo;Jung, Jae-Gil;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 2013
  • The microstructures and hardness distributions of a large-sized high strength H-sectional steel with both V and Nb were systematically examined. The outer surface of the flange part was composed of martensite and bainite due to faster cooling, and had a high hardness value of approximately 310 Hv. However, the amounts of ferrite and pearlite increased and the hardness decreased with increasing the distance from the outer surface at the flange part, except the inner surface. High hardness value of about 290 Hv was measured at the upper surface of the web part having martensite and bainite. The hardness drastically decreased with increasing the web thickness, and then greatly rose again at the lower surface due to bainite formation caused by fast air cooling. The hardness of the flange part was higher than that of the web part due to the larger amount of low-temperature transformed phases, except for the lower surface of the web part. Nb-rich precipitates of 30 to 50 nm and V-rich precipitates less than 20 nm were observed at both flange and web parts. However, the particle size was smaller at the flange part than the web part, resulting in the higher strength of the flange part.

Microstructure and Mechanical Properties of the High-Hardness Armor Steels (고경도 철계 장갑재의 미세조직과 기계적 특성 분석)

  • Lee, Ji-Min;Han, Jong-Ju;Song, Young-Beum;Ham, Jin-Hee;Kim, Hong-Kyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.459-465
    • /
    • 2018
  • This paper presents a study of the microstructure and mechanical properties of commercial high-hardness armor (HHA) steels tempered at different temperatures. Although the as-received specimens of all the steels exhibit a tempered martensite structure with lath type morphology, the A steel, which has the smallest carbon content, had the lowest hardness due to reduced solid solution hardening and larger lath thickness, irrespective of tempering conditions. As the tempering temperature increases, the hardness of the steels steadily decreases because dislocation density decreases and the lath thickness of martensite increases due to recovery and over-aging effects. When the variations in hardness plotted as a function of tempering temperature are compared with the hardness of the as-received specimens, it seems that the B steel, which has the highest yield and tensile strengths, is fabricated by quenching, while the other steels are fabricated by quenching and tempering. On the other hand, the impact properties of the steels are affected by specimen orientation and test temperature as well as microstructure. Based on these results, the effect of tempering on the microstructure and mechanical properties of commercial high-hardness armor steels is discussed.

Hardness of Constituent Phases in Ti(C0.7N0.3)-WC-Ni Cermets Measured by Nanoindentation (나노인덴테이션으로 측정한 Ti(C0.7N0.3)-WC-Ni 써멧 구성상의 경도)

  • Kim, Seong-Won;Kim, Dae-Min;Kang, Shin-Hoo;Kim, Hyeong-Jun;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.116-121
    • /
    • 2009
  • The constituent phases in Ti($C_{0.7}N_{0.3}$)-xWC-20Ni (wt%, x=5, 15, 25) cermets were characterized using nanoindentation in conjunction with observation of microstructure. The microstructure of cermet is composed of hard phase and binder phase, which gave rise to a wide range of hardness distribution when nanoindentation was carried out on the polished surface of cermets. Because of the inhomogeneous nature of cermet microstructure, observation of indented surface was indispensable in order to separate the hardness of each constituent phase. The measured values of hardness using nanoindentation were ${\sim}14\;GPa$ for the binder phase and ${\sim}24$ to 28 GPa for the hard phase, of which nanoindentation hardness was decreased with the addition of WC into Ti($C_{0.7}N_{0.3}$)-Ni system. In addition, the nanoindentation hardness of Ni binder phase was much higher than reported Vickers hardness, which could result from confined deformation of binder phase due to the surrounding hard phase particles.

EFFECT ON IMMERSI0N DISINFECTION OF HYDROPHIILIC RUBBER IMPRESSI0N MATERIAL ON DIMENSIONAL STABILITY AND SURFACE HARDNESS OF IMPROVED STONE CAST (친수성 고무인상재의 침적 소독이 경석모형의 크기의 안정성과 표면경도에 미치는 영향)

  • Nam, Mee-Hyun;Kang, Woo-Jin;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.569-583
    • /
    • 1995
  • Disinfection of dental impressions are necessary due to contamination with patient’s saliva and blood, which is a potential for cross-infection. The purpose of this study was to evaluate the effects of disinfection of four hydrophilic rubber impression materials with three disinfecting solutions, on the dimensional stability and surface hardness of improved stone casts. Three hydrophilic vinyl polysiloxane impression materials(Express, Reprosil, Exafine) and one polyether impression material(Impregum-F) were mixed according to the manufacturer’s directions and impressions were made on a ADA specification No. 19 stainless-steeldie. On removal of the impressions, each impression was immersed in one of the disinfectants(Banicide, Potadine, Clorox) for 10 minutes. After disinfection, type IV improved stone. casts were poured. On this cast, the linear dimension and surface hardness were measuredusing a Measurescope(Nikon, Japan) and a Barcol hardness tester(Barber, Colman Co U. S. A). The results were as follows : 1. The improved stone casts from disinfected Reprosil and Impregum-F impression material did not show dimensional changes(P>0.01). Those from disinfected Express and Exafine impression material showed dimensional changes(P<0.01). The amount of shrinkage was not clinically significant. 2. The improved stone casts from disinfected Express impression material did not exhibit changes in surface hardness(P>0.01), but those from disinfected Reprosil, Exafine, Imp regnum-F impression material showed changes in surface hardness(P<0.01). 3. The dimensinal stability and surface hardness of the improved stone casts were satisfactory using Banicide on Express, all disinfectants used in this study on Reprosil, Potadin and Clorox on Exafine, Banicide and Clorox on Impregum-F. According to these results, immersion disinfection of hydrophilic rubber impression mate rials did not adversely affect the resultant casts. Nevertheless compatibility tests of impression materials and disinfectants should be done when disinfecting impressions.

  • PDF

CONTROL OF HARDNESS OF OIL-WAX GELS BY A NOVEL BRANCHED WAX AND APPLICATION TO LIPSTICKS

  • Yoshida, K.;Shibata, M.;Ito, Y.;Nakamura, G.;Hosokawa, H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.469-479
    • /
    • 2003
  • A novel branched wax has been developed for the control of the hardness of oil-wax gels. Using this wax, glossier application and smoother texture but tough lipstick can be obtained. Oil-wax gels are oily solids composed of liquid and crystalline solid oils (waxes). They are widely used in various cosmetic products, especially lipsticks. The control of gel hardness is one of the most important techniques in improvement of the lipstick quality. Addition of small amounts of commercial branched paraffin wax (e.g. microcrystalline wax, b-PW) to n-paraffin wax (n-PW) has been commonly used to increase gel hardness. However, gel hardness is very sensitive to the quantity of b-PW and the gel obtained is not always hard enough for practical use. In this study we examined the relationship between the gel hardness and the properties of the wax crystal in the gel. We have found that, when b-PW is added to n-PW, the wax crystal size becomes smaller (hardening the gels) and its crystallinity is decreased (softening the gels) simultaneously. Considering this result, we have developed a novel branched wax, Bis(polyethylenyl)- tetramethyldisiloxane (named ESE). ESE molecules are composed of a central tetramethyldisiloxane unit (branch unit) with polyethylene units at both ends. The central unit may suppress crystal growth while the ends are expected to prevent a decrease in wax crystallinity during crystallization. When ESE is added to n-PW, the wax crystal obtained becomes smaller without decreasing in crystallinity; consequently, the gel hardness is dramatically increased. By using ESE, the total amount of wax in a lipstick can be decreased by 30% without spoiling the stick toughness, thereby achieving glossy application and smooth texture.

  • PDF