• Title/Summary/Keyword: hazard analysis

Search Result 2,725, Processing Time 0.028 seconds

Quantitative Hazard Analysis of Information Systems Using Probabilistic Risk Analysis Method

  • Lee, Young-Jai;Kim, Tae-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.3
    • /
    • pp.59-71
    • /
    • 2009
  • Hazard analysis identifies probability to hazard occurrence and its potential impact on business processes operated in organizations. This paper illustrates a quantitative approach of hazard analysis of information systems by measuring the degree of hazard to information systems using probabilistic risk analysis and activity based costing technique. Specifically the research model projects probability of occurrence by PRA and economic loss by ABC under each identified hazard. To verify the model, each computerized subsystem which is called a business process and hazards occurred on information systems are gathered through one private organization. The loss impact of a hazard occurrence is produced by multiplying probability by the economic loss.

  • PDF

A study on hazard analysis techniques for railway signalling system (철도신호시스템 분석을 위한 위험원 분석 techniques 연구)

  • Li, Chang-Long;Jung, Ho-Hung;Oh, Sea-Hwa;Yun, Hak-Sun;Lee, Key-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.232-238
    • /
    • 2011
  • Hazard analysis provides the basic foundation for system safety. Hazard analysis is performed to identify hazards, hazard effects, and hazard causal factors. Hazard analysis is used to determine system risk, to determine the significance of hazards, and to establish design measures that will eliminate or mitigate the identified hazards. Hazard analysis is used to systematically examine systems, subsystems, facilities, components, software, personnel, and their interrelationships, with consideration given to logistics, training, maintenance, test, modification, and operational environments. This paper present hazard analysis techniques which is commonly used in railway signalling, comparised their benefits and limitations.

  • PDF

Hybrid Hazard Analysis for Improving Safety of Railway System (철도 시스템의 안전성 향상을 위한 하이브리드 위험원 분석)

  • Jeong, Daehui;Kwon, Gihwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.133-144
    • /
    • 2018
  • IEC 62278, the Railway System Safety Standard, requires for hazard analysis to prevent or control the hazard that the railway system may have. If hazard analysis is not performed sufficiently, there is a high probability that accidents will occur. For this reason, hazard analysis methods are actively studied. In this paper, we propose the hybrid hazard analysis method to combine two representative hazard analysis methods: reliability-based and system-theoretic. As the proposed method is complementary to existing ones, it covers both the hazard caused by failure of components and the hazard occurred from the unintended control between components. It applies to the development of a safety protection mechanism for multiple cruise control system that automatically control the speed of trains to avoid the collision among trains. As a result, we drive more safety requirements than the existing analysis methods and it turns out that the safety requirements protect the trains with respect to the identified hazards.

Comparison of Hazard Analysis for Medical Device System (의료기기 시스템의 해저드 분석 기법 비교)

  • Choi, Bo-yoon;Lee, Byong-gul;Han, Hyuk-soo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.133-145
    • /
    • 2018
  • Medical systems incurred accidents may result in significant damage for human being. Therefore, performing hazard analysis is important for medical system which is to identify hazard for preventing the accidents and minimizing the potential harm. Hazard analysis that is applied medical systems are difficult to apposite selected, because difference of analysis methods and applied development lifecycle is caused by objective of hazard analysis. It is required to select appropriate hazard analysis at concept phase during development lifecycle, owing to basic requirement elicitation to mitigate or prevent hazard based on identified hazard at concept phase. In this paper, hazard analysis methods, PHA and STPA, are compared at concept phase in which both methods have been applied on the medical system. As a result of compared methods, hazard analyst can be selected optimized hazard analysis methods for concept phase of the medical systems.

A Study on the Verification Scheme for Electrical Circuit Analysis of Fire Hazard Analysis in Nuclear Power Plant (원전 화재위험도분석에서 전기회로분석 검증방안에 관한 연구)

  • Yim, Hyuntae;Oh, Seungjun;Kim, Weekyong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2015
  • In a fire hazard analysis (FHA) for nuclear power plant, various electrical circuit analyses are performed in the parts of fire loading analysis, fire modeling analysis, separation criteria analysis, associated circuit analysis, and multiple spurious operation analysis. Thus, electrical circuit analyses are very important areas so that reliability of the analysis results should be assured. This study is to establish essential electrical elements for each analysis for verification of the reliability of the electrical circuit analyses in the fire hazard analysis for nuclear power plants. Applying the results derived by the study to domestic nuclear power plants, it is expected to determine the adequacy of the fire hazard analysis report and contribute to the reliability of the fire hazard analysis of those plants.

Safety Design of the Loop Heat Pipe (LHP) by the Hazard Analysis

  • Tanaka, Kiyoshi
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.54-57
    • /
    • 2010
  • The LHP uses the capillary head instead of the mechanical pump to transfer the fluid. It does not have any moving parts and transfer the fluid by the capillary head between the vapor and liquid interface of the wick like a heat pipe (HP). Moreover, vapor and liquid flows in the same direction. It can reduce the loss of the pressure in the wick (very short wick in the evaporator) and can transfer large heat over long distance compared with HP. It is necessary that we do the hazard analysis that is a part of the safety design, for the benefit of eliminating and inhibit the hazard. In this paper, we describe the hazard analysis of LHP.

A Study on Development of Pre-Hazards Risk Analysis Guide Tool (연구실 위험분석을 위한 사전유해인자 가이드 Tool 개발 연구)

  • Choi, Byeong Kyu;Rhie, Kwang Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.133-140
    • /
    • 2017
  • The Ministry of Science, ICT and Future Planning made law for Pre-Hazard Risk Analysis in December 31, 2014 to protect researchers from continuing accidents in laboratory. Conducted before an experiment, Pre-Hazard Risk Analysis finds hazards of the experiment and rules to manage the hazards.So the Pre-Hazard Risk Analysis can support laboratory safety system by prevent accidents in laboratory. Pre-Hazards Risk Analysis is newly created system so that executors need Guidelines to perform this analysis properly. This study is to develop guide tool for Pre-Hazard Risk Analysis by analyzing other risk assessment systems; PSM, Off-site Consequence Assessment, laboratory safety system. Also, this study suggested how to establish database for Pre-Hazard Risk Assessment by analyse KRAS.

Verification of Landfill Hazard Ranking Model by Sensitivity Analysis (민감도 분석에 의한 LHR 모형의 검증)

  • Hong, Sangpyo;Kim, Jungwuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • LHR(Landfill Hazard Ranking Model) was developed for assessing the relative hazard of landfills by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a qualitative risk assessment approach. A pairwise comparision method was applied to determine weights of landfill factors related. To prove the validity of weights allocation of landfill hazard evaluation factors, sensitivity analysis was applied. Firstly, the impact on landfill hazard score according to variations of weights of landfill hazard factors was analyzed. Secondly, the impact on landfill hazard score according to conditions change of landfill hazard factors was analyzed. As a result of sensitivity analysis, LHR composite scores are largely influenced by some factors following sequential order such as waste volume, proximity to sensitive environments, containment facilities, distance from drinking water supplies, and waste toxicity. The relative order of landfill hazard evaluated by LHR is not influenced by the weights change of individual factors. Therefore, LHR seems to be a credible model to determine priorities of landfill remediation based on the vulnerability of water resources.

  • PDF

AUTOMATION OF QUANTITATIVE SAFETY EVALUATION IN CHEMICAL PROCESSES

  • Lee, Byung-Woo;Kang, Byoung-Gwan;Suh, Jung-Chul;Yoon, En-Sup
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.252-259
    • /
    • 1997
  • A method to automate hazard analysis of chemical plants is proposed in this paper. The proposed system is composed of three knowledge bases - unit knowledge base, organizational knowledge base and material knowledge base, and three hazard analysis algorithms - deviation, malfunction and accident analysis algorithm. Hazard analysis inference procedure is developed based on the actual hazard analysis procedures and accident development sequence. The proposed algorithm can perform hazard analysis in two methods and represent all conceivable types of accidents using accident analysis algorithm. In addition, it provides intermediate steps in the accident propagation, and enables the analysis result to give a useful information to hazard assessment. The proposed method is successfully demonstrated by being applied to diammonium phosphate manufacturing process. A system to automate hazard analysis is developed by using the suggested method. The developed system is expected to be useful in finding the propagation path of a fault or the cause of a malfunction as it is capable to approach causes of faults and malfunctions simultaneously.

  • PDF

On the Development of Systems Safety Requirements Using Hazard Analysis Results (위험원 분석 결과를 반영한 시스템 안전 요구사항 생성에 관한 연구)

  • Kim, Jae-Chul;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.9-16
    • /
    • 2011
  • Modern systems become more complex and the demand for systems safety goes up sharply. Thus, the proper handling of the safety requirements in the systems design is getting greatly increased attention these days. Hazard analysis has been one of the active areas of research in connection with systems safety. In this paper, we study a subject on how the hazard analysis results can be incorporated in the systems design. To this end we set up a goal on how to systematically generate safety requirements that should reflect hazard analysis results and be implemented in the systems design and development. To do so, we first review the process for systems design and suggest the associated Model. Then the process and results of hazard analysis are analyzed and Modeled particularly with emphasis on the safety data. The resulting data Model incorporating both the hazard analysis and system life cycle is used in the generation of safety requirements. Based on the developed data Model, the generation of the requirements, the construction of requirements DB, and the change management later on is demonstrated through the use of a computer-aided software tool.