• Title/Summary/Keyword: hazard distance

Search Result 168, Processing Time 0.027 seconds

Consequence Modeling Methodology for Prediction of Hazard Distance for Two-phase Flow Release from the Pressurized Chlorine Saturated Liquid Storage Tank (가압 염소포화액체 저장탱크의 2상 흐름 누출에 대한 유해위험거리의 예측을 위한 결과영향 모델링 방법론)

  • Song D. M.;Park Y. S.;Park J. K.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.7-17
    • /
    • 1998
  • This study is to develop the consequence modeling methodology for quantitative prediction of the hazard distance(or toxic buffer distance) for two-phase flow continuous releases from the pressurized chlorine saturated liquid storage tank of the chemical plant facilities. The source term modeling was peformed by the refined analysis method based on USEPA's guideline and SuperChems model self-calculation, respectively. The hazard distance was predicted for STEL, IDLH and ERPGs(ERPG-2 and ERPG-3) concentrations being used as the toxic regultaion concentration in hazard estimation. To use as hazard estimation guideline for the establishment of the emergency response planning, the effects of source characteristics and meteorological vaiations on the hazard distance was especially considered for ERPG-2 concentration.

  • PDF

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Sensitivity Analysis of Seismic Source Models for Probabilistic Seismic Hazard Analysis (확률론적 지진재해도 분석을 위한 지진원 모델의 민감도 분석)

  • 김연중;전정윤;김태균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.36-45
    • /
    • 2003
  • Sensitivity analyses for several seismic source models were studied. For the area sources, the hazard is steeply decreasing with the source-to-site distance. Hazard is decreasing when the area of the source is increasing with fixed annual rate. For the fault sources, the fault length, distance from a site and dip angle of near fault show very sensitive effect to seismic hazard. But the various magnitude-rupture length relationships show effect to seismic hazard slightly. For the fault source with small magnitude, the exponential model is preferred rather than the characteristic model to the magnitude-recurrence law.

  • PDF

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

New fuzzy method in choosing Ground Motion Prediction Equation (GMPE) in probabilistic seismic hazard analysis

  • Mahmoudi, Mostafa;Shayanfar, MohsenAli;Barkhordari, Mohammad Ali;Jahani, Ehsan
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.389-408
    • /
    • 2016
  • Recently, seismic hazard analysis has become a very significant issue. New systems and available data have been also developed that could help scientists to explain the earthquakes phenomena and its physics. Scientists have begun to accept the role of uncertainty in earthquake issues and seismic hazard analysis. However, handling the existing uncertainty is still an important problem and lack of data causes difficulties in precisely quantifying uncertainty. Ground Motion Prediction Equation (GMPE) values are usually obtained in a statistical method: regression analysis. Each of these GMPEs uses the preliminary data of the selected earthquake. In this paper, a new fuzzy method was proposed to select suitable GMPE at every intensity (earthquake magnitude) and distance (site distance to fault) according to preliminary data aggregation in their area using ${\alpha}$ cut. The results showed that the use of this method as a GMPE could make a significant difference in probabilistic seismic hazard analysis (PSHA) results instead of selecting one equation or using logic tree. Also, a practical example of this new method was described in Iran as one of the world's earthquake-prone areas.

Safety Design of the Loop Heat Pipe (LHP) by the Hazard Analysis

  • Tanaka, Kiyoshi
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.54-57
    • /
    • 2010
  • The LHP uses the capillary head instead of the mechanical pump to transfer the fluid. It does not have any moving parts and transfer the fluid by the capillary head between the vapor and liquid interface of the wick like a heat pipe (HP). Moreover, vapor and liquid flows in the same direction. It can reduce the loss of the pressure in the wick (very short wick in the evaporator) and can transfer large heat over long distance compared with HP. It is necessary that we do the hazard analysis that is a part of the safety design, for the benefit of eliminating and inhibit the hazard. In this paper, we describe the hazard analysis of LHP.

Pre-resilience Group Activities Against a Forthcoming Big Flood Disaster in Tokyo Below-Sea-Level Area

  • Ichiko, Taro;Kato, Takaarki;Ishikawa, Kinji
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.3-8
    • /
    • 2011
  • In April 2010, Japan Cabinet Office has published the first countermeasure report for severe flood disasters. This report showed various flood-disaster scenarios and factors that widened damages. One of important suggestions was to transmit precious information for long-distance evacuation. So far, local municipalities have made Flood Hazard Map to inform resident risk and evacuation. In this paper, cognition and effectiveness of a flood hazard map in the down ARAKAWA river Tokyo were measured by social questionnaire survey. In conclusion, there were 3 factors to effect validity of a flood hazard map. There were (1) commitment to their neighborhood organization, (2) experience of Kathleen typhoon in 1947 and (3) level of using targeted river. As results, a logical diagram about a flood hazard map perception was drawn and discussed from a view of community-based approach.

  • PDF

Verification of Landfill Hazard Ranking Model by Sensitivity Analysis (민감도 분석에 의한 LHR 모형의 검증)

  • Hong, Sangpyo;Kim, Jungwuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • LHR(Landfill Hazard Ranking Model) was developed for assessing the relative hazard of landfills by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a qualitative risk assessment approach. A pairwise comparision method was applied to determine weights of landfill factors related. To prove the validity of weights allocation of landfill hazard evaluation factors, sensitivity analysis was applied. Firstly, the impact on landfill hazard score according to variations of weights of landfill hazard factors was analyzed. Secondly, the impact on landfill hazard score according to conditions change of landfill hazard factors was analyzed. As a result of sensitivity analysis, LHR composite scores are largely influenced by some factors following sequential order such as waste volume, proximity to sensitive environments, containment facilities, distance from drinking water supplies, and waste toxicity. The relative order of landfill hazard evaluated by LHR is not influenced by the weights change of individual factors. Therefore, LHR seems to be a credible model to determine priorities of landfill remediation based on the vulnerability of water resources.

  • PDF

Investigation of the Experiment for Separation Distance between Powerline Earth and Pipelines (전력선 접지와 매설배관의 이격거리 실증실험 사례 조사)

  • Lee, H.G.;Ha, T.H.;Ha, Y.C.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.87-88
    • /
    • 2006
  • There are a number of reported instances of actual pipeline rupture during power line faults caused by melting of the pipe wall. This type of hazard was considered to be among the most serious of AC effects on pipelines in an international survey, comparable to the personnel safety hazard. Moreover, resistance coupling is not only a risk when the pipeline parallels a power line but also when they cross. One method of minimizing the effects of resistive coupling is by maintaining an appropriate separation distance between the pipeline and tower. This paper investigate the experiment for separation distance between the powerline earth and pipelines.

  • PDF