• Title/Summary/Keyword: heat conduction analysis

Search Result 458, Processing Time 0.028 seconds

Calculation of Heat Transfer Coefficients by Steady State Inverse Heat Conduction (정상상태의 열전달계수 예측을 위한 최적화기법의 열전도 역문제에 관한 연구)

  • 조종래;배원병;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 1997
  • The inverse heat conduction problems is the calculation of surface heat transfer coefficients by utilizing measured temperature. The numerical technique of finite element analysis and optimizition is introduced to calculate temperatures and heat transfer coefficients. The calculated heat transfer coefficients and temperature distribution are good agreement with the results of direct analysis. The inverse method has been applied to the control valve of nuclear power plant.

  • PDF

Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium (유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF

Numerical investigation of plate fin performance for a compact heat exchanger (밀집형 열교환기에 사용하는 평판핀 성능에 관한 수치적 연구)

  • 유재욱;송태호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.292-300
    • /
    • 1999
  • Fin conduction not only enhances heat transfer to the ambient air but also increases tube-to-tube conduction. The latter is known to deteriorate the heat exchanger performance. Heat conduction between neighboring tubes thorough the fin is numerically investigated for accurate performance analysis of plate finned-tube heat exchangers. Governing equations for arbitrary plate fin are solved and the temperature distribution is obtained using the principle of superposition. Analysis is made using finite element method by changing the shapes of fin, the arrangements of tubes and the fin parameter mD. It is found that tube-to-tube conduction is significant when mD is small or the distance between neighboring tubes is small.

  • PDF

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

The Effects of the STS 304 Hollow Cylinder Property Variations on the Non-Steady Heat Conduction (STS 304 중공 원통의 물성치 변화가 비정상 열전도에 미치는 영향)

  • Lee, S.C.;Choi, H.G.;Seo, J.S.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The effects of the STS 304 hollow cylinder property variations on the non-steady heat conduction are considered in this paper. In the non steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity is varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer is so important in case of varying temperature.

  • PDF

Effects of longitudinal conduction on the performance of heat transfer surfaces (유동방향의 열전도가 전열면의 성능에 미치는 영향)

  • Park, Byung-Kyu;Hong, Taek;Park, Sang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.561-569
    • /
    • 1999
  • The effects of longitudinal heat conduction on the performance of heat transfer surfaces are investigated by using a single-blow method. In the transient testing method for determining the heat transfer characteristics, exponential inlet temperature variations are made by using screen-mesh heater with small time constant and low frontal velocities of the test section, and the experimentally determined inlet temperature profile is used as the inlet fluid temperature condition. The effects of longitudinal heat conduction are negligible only if $\gamma^\act<0.05\;and \;N_{tu}\le3$ and should be considered if $N_{tu}\le3$ The test results ate compared with the existing theoretical and experimental data and the validity of this technique is confirmed by the good agreement.

  • PDF

Investigation of Local Convective Heat Transfer around a Circular Tube in Cross Flow of Air (원관 주위로 공기의 국소 대류 열전달에 대한 연구)

  • 이억수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.546-555
    • /
    • 2004
  • With circular tube heated directly or indirectly placed in a cross flow, heat flows circumferentially by conduction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube. The circumferential heat flow affects the wall temperature distribution to such an extent that in some cases. The effects of circumferential wall heat conduction on local convective heat transfer is investigated. The wall heat conduction parameter which can be deduced from the governing energy equation should be used to express the effect of circumferential heat conduction. Two-dimensional temperature distribution is presented through the numerical analysis. The comparison of one-dimensional and two-dimensional solutions is demonstrated on graph of local Nusselt numbers.

Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method (열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석)

  • Park Chul-Woo;Lee Boo-Youn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

AN IMPROVED MONTE CARLO METHOD APPLIED TO THE HEAT CONDUCTION ANALYSIS OF A PEBBLE WITH DISPERSED FUEL PARTICLES

  • Song, Jae-Hoon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Improving over a previous study [1], this paper provides a Monte Carlo method for the heat conduction analysis of problems with complicated geometry (such as a pebble with dispersed fuel particles). The method is based on the theoretical results of asymptotic analysis of neutron transport equation. The improved method uses an appropriate boundary layer correction (with extrapolation thickness) and a scaling factor, rendering the problem more diffusive and thus obtaining a heat conduction solution. Monte Carlo results are obtained for the randomly distributed fuel particles of a pebble, providing realistic temperature distributions (showing the kernel and graphite-matrix temperatures distinctly). The volumetric analytic solution commonly used in the literature is shown to predict lower temperatures than those of the Monte Carlo results provided in this paper.