• Title/Summary/Keyword: heat exchangers

Search Result 848, Processing Time 0.034 seconds

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.

Fouling Analyses of Heat Exchangers for PSR (주기적안전성평가를 위한 원전 열교환기 Fouling 평가)

  • Hwang, K.M.;Jin, T.E.;Han, S.G.;Kim, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1467-1472
    • /
    • 2003
  • Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper focuses on fouling analyses for six heat exchangers of two primary systems in two nuclear power plants; the regenerative heat exchangers of the chemical and volume control system and the component cooling water heat exchangers of the component cooling water system. To analyze the fouling for heat exchangers, fouling factor was introduced based on the ASME O&M codes and TEMA standards. Based on the results of the fouling analyses, the present thermal performances and fouling levels for the six heat exchangers were predicted.

  • PDF

A Study on the Development of Fouling Analysis Technique for Shell-and-Tube Heat Exchangers (다관원통형 열교환기의 파울링 해석기법 개발 연구)

  • Hwang, Kyeong-Mo;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique fur heat exchangers, fouling factor was introduced based on the ASME O&M codes and TEMA standards. For the purpose or verifying the fouling analysis technique, the routing analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system.

An Experimental Study on the Performance of Brazed Plater Heat Exchangers (용접형 판형열교환기 성능측정에 관한 실험적 연구)

  • Park, Hyun-Min;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.551-557
    • /
    • 2013
  • The heat transfer performance and pressure drop characteristics of brazed-plate heat exchangers with 20 and 30 plates were experimentally measured and analyzed in this study. The mass flow rates of the heat exchangers with 20 and 30 plates were fixed at 0.6 and 0.9 kg/s for the low temperature side, respectively. The mass flow rate for the high temperature side was controlled from 0.2 kg/s to 1.2 kg/s. The inlet temperatures for the high and low temperature sides were $10^{\circ}C$ and $7^{\circ}C$, respectively. The heat transfer characteristics were not influenced by the number of plates. The pressure drop at the heat exchanger with 30 plates was slightly higher than that with 20 plates. The values calculated from the correlations based on gasket plate heat exchangers were compared with the experimental results. It was found that the predicted Nusselt numbers for the gasket plate heat exchangers were about 5% to 20% lower than the measured Nusselt numbers for the brazed plate heat exchangers. However, a pressure drop comparison showed that the calculated pressure drops at the gasket plate heat exchangers were less than half of the measured pressure drops at the brazed plate heat exchangers.

A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Yoo Seong-Yeon;Chung Min-Ho;Lee Yong-Moon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.839-848
    • /
    • 2005
  • Plastic plate heat exchangers have many advantages over the conventional heat exchangers such as aluminum plate heat exchangers, rotary wheel heat exchangers and heat pipe heat exchangers which have been used for ventilation heat recovery in the air-conditioning systems. In the present study, pressure drop and heat transfer characteristics of plastic plate heat exchangers are investigated for various design parameters and operating conditions which affect the performance of the plastic plate heat exchangers. In flat plate type heat exchanger, material thickness and channel height of heat exchanger are considered, and corrugate size and heat transfer area are considered in case of corrugate type heat exchanger. Pressure drop and effectiveness of the corrugate type heat exchanger increase as the corrugate size decreases.

Performance Comparison of Fin-Tube Heat Exchanger and Aluminum Heat Exchanger (핀 튜브 열교환기와 알루미늄 열교환기의 성능 비교)

  • Chang, K.S.;Lee, H.S.;Kim, J.D.;Hong, S.R.
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.408-413
    • /
    • 2008
  • This study presents comparison of the air side heat transfer and friction characteristics in a heating condition between Louver fin-tube heat exchangers and aluminum heat exchangers. Experiments are performed for the Louver fin-tube heat exchangers and aluminum heat exchangers using a calorimeter, which is designed based on air-enthalpy method described in ASHRAE standards. The air velocities its are varied from 0.7 to 1.6 m/s with 0.3 m/s interval. A study result shows that the heat transfer performances of aluminum heat exchangers are $40{\sim}80%$ higher than those of Louver fin-tube heat exchangers per unit volume, mass and heat transfer area.

  • PDF

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.

A Study on the Development of Plugging Margin Evaluation Method Reflected the Fouling of a Shell-and-Tube Heat Exchanger (다관원통형 열교환기의 파울링 현상을 고려한 관막음 여유 평가법 개발 연구)

  • Hwang, Kyeong-Mo;Jin,Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1384-1389
    • /
    • 2004
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation mettled reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the future fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.