• Title/Summary/Keyword: heat hyperalgesia

Search Result 14, Processing Time 0.032 seconds

Secondary Hyperalgesia to Heat Stimuli Induced by Continuous Deep Pain: A Case Report

  • Park, Jun-Hyong;Kang, Jin-Kyu;Shim, Young-Joo
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2016
  • Central sensitization represents a functional change of second order neuron induced by continuous deep pain input and maintained by psychosocial factors. When afferent neurons are involved with central sensitization, secondary hyperalgesia can appear. Secondary hyperalgesia is an increased sensitivity to stimulation without a local cause. Reports on secondary hyperalgesia to heat stimuli are relatively rare compared to mechanical stimuli. And there were few reports of secondary hyperalgesia to heat stimuli in the oral cavity. We presented a case of secondary hyperalgesia to heat stimuli in the gingival area induced by continuous odontogenic pain with a review of the related literature.

Effect of Minocycline on Activation of Glia and Nuclear Factor kappa B in an Animal Nerve Injury Model

  • Gu, Eun-Young;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.237-243
    • /
    • 2004
  • Glial cells are activated in neuropathy and play a key role in hyperalgesia and allodynia. This study was performed to determine whether minocycline could attenuate heat hyperalgesia and mechanical allodynia, and how glial cell activation and nuclear factor kappa B (NF-kappaB) were regulated by minocycline in a model of chronic constriction of sciatic nerve (CCl). When minocycline (50 mg/kg, oral) was daily administered from 1 day before to 9 days after ligation, heat hyperalgesia and mechanical allodynia were attenuated. Furthermore, when minocycline treatment was initiated 1 or 3 days after ligation, attenuation of the hypersensitive behavior was still robust. However, the effect of attenuation was less when minocycline was started from day 5. In order to elucidate the mechanism of pain attenuation by minocycline, we examined the changes of glia and NF-kappaB, and found that attenuated hyperalgesia and allodynia by minocycline was accompanied by reduced microglial activation. Furthermore, the number of NF-kappaB immunoreactive cells increased after CCI treatment and this increase was attenuated by minocycline. We also observed translocation of NF-kappaB into the nuclei of activated glial cells. These results suggest that minocycline inhibits activation of glial cells and NF-kappaB, thereby attenuating the development of behavioral hypersensitivity to stimuli.

The Effects of TENS and cold application on secondary thermal hyperalgesia in rats induced by muscle pain (근통증이 유발된 흰쥐에 있어 TENS와 냉적용이 이차성 열 통각과민에 미치는 영향)

  • Chae Yun-Won;Kim Sang-Yub;Kim Jin-sang;Park Rae-joon;Gu Hyun-mo;Lim Chang hun
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2004
  • The aim of this study was to investigate the effects of TENS and cold application on secondary thermal hyperalgesia in rats induced by muscle pain. Muscle pain was induced in male Sprague-Dowley rats by intra-muscular injection of gastrocnemius with $3\%$ carrageenan. The paw withdrawal latency(PWL) and tail flick test(TFT) to heat were used to detect secodary thermal hyperalgesia induced by the muscle pain. PWL and TFT were quantified before and 4, 10, and 24 h after induction of muscle pain and after application of TENS(100Hz, $100{\mu}s$, sensory intensity) and cold($4^{\circ}C$). TENS and cold significantly reduced the PWL and TFT to heat stimuli when compared with controls receiving no TENS and cold(p<.05). These results suggested that application of TENS and cold attributed to decrease secodary thermal hyperalgesia in rat induced by muscle pain.

  • PDF

Mechanism of Hyperalgesia Following Cutaneous Inflammation by Complete Freund Adjuvant (Complete Freund Adjuvant에 의한 피부염증에서 통각과민현상의 기전)

  • Jeong, Yong;Leem, Joong-Woo;Chung, Seung-Soo;Kim, Yun-Suk;Yoon, Duck-Mi;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.13 no.2
    • /
    • pp.164-174
    • /
    • 2000
  • Background: After an injury to tissue such as the skin, hyperalgesia develops. Hyperalgesia is characterized by an increase in the magnitude of pain evoked by noxious stimuli. It has been postulated that in the mechanism of hyperalgesia (especially secondary hyperalgesia) and allodynia, a sensitization of central nervous system such as spinal dorsal horn may contribute to development of hyperalgesia. However, the precise mechanism is still unclear. In the present study, we investigated the roles of N-methyl-D-aspartate (NMDA) receptor and nitric oxide (NO) system in the mechanism of hyperalgesia, and their relations with c-fos expression Methods: Inflammation was induced by injection of complete Freund adjuvant (CFA) into unilateral hindpaw of Sprague-Dawley rat. Behavioral studies measuring paw withdrawal responses by von Frey filaments and paw withdrawal latencies by radiant heat stimuli and stainings of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and c-fos immunoreactivity were performed. The effects of MK-801, an NMDA receptor blocker and $N^\omega$-nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor were evaluated. Results: 1) Injection of CFA induced mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia. And it increased the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 2) MK-801 inhibited mechanical hyperalgesia and thermal hyperalgesia induced by CFA and reduced the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 3) L-NNA inhibited the thermal hyperalgesia and reduced the number of NADPH-diaphorase positive neurons, but did not affect the number of c-fos expression neurons. Conclusions: These results suggest that in the mechanism of mechanical hyperalgesia, NMDA receptor but not NO-system is involved and in the case of thermal hyperalgesia both NMDA receptor and NO system are involved. NO system did not affect the expression of c-fos, but c-fos expression and NOS activity were dependent on the activity of NMDA receptor.

  • PDF

Berberine Alleviates Paclitaxel-Induced Neuropathy

  • Rezaee, Ramin;Monemi, Alireza;SadeghiBonjar, Mohammad Amin;Hashemzaei, Mahmoud
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.90-94
    • /
    • 2019
  • Objectives: Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods: This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results: Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion: Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.

Expression of spinal cord c-fos with cold therapy in rats of carrageenan-induced inflammatory muscle pain (Carrageenan으로 유도된 염증성 근통증 흰쥐 모델에서 냉치료에 의한 척수의 c-fos의 발현)

  • Paek Yun-Woong
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.190-198
    • /
    • 2003
  • Expression of c-fos, an immediate early gene, has accepted to be a marker of functional activity in neurons. This study was aimed to investigate the effects of cold therapy on the expression of spinal cord c-fos in rats of carrageenan-induced muscle pain. Muscle pain was induced in male Sprague-Dawley rats by intra-muscular injection of gastrocnemius with $2\%$ carrageenan. The paw withdrawal latency (PWL) and tail flick test (TFT) responses to heat stimuli were used to detect secondary hyperalgesia produced by the muscle pain and measured to assess the effects of cold. The expression of c-fos was determined in the lumbar regions of the spinal cord by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry assays. The secondary hyperalgesia to heat simuli (PWL and TFT) were significantly reduced in cold therapy compared with that in the controls. In RT-PCR assays the expression of c-fos mRNA was down-regulated in the lumbar spinal cord in cold group. In addition, Fos immunoreactivity in the dorsal horn of the lumbar spinal cord was decreased in cold group. These results suggested that application of cold attributed to increase PWL and TFT responses and to decrease expression of the c-fos produced by muscle pain.

  • PDF

Anti-inflammatory and Analgesic Effects of the Aqueous Extract of Angelicae Tenuissimae Radix

  • Yoon, Jeong-Hwan;Lee, Suh-Ha;Choi, Ho-Young;Lee, Bong-Jae;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Choong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1032-1035
    • /
    • 2006
  • Angelicas Tenuissimae Radix (ATR) has traditionally been used for flu-like symptoms, limb-ache and disability, and even for toothache. In the present study, the effect of ATR on carrageenan-induced edema, acetic acid-induced abdominal pain, and heat-induced hyperalgesia were investigated using rats and mice. In the present results, ATR reduced carrageenan-induced edema in rats and inhibited acetic acid-induced abdominal pain in mice. Here in this study, we have shown that ATR possesses anti-inflammatory and analgesic effects.

Incision-induced Pain Behaviors in the DBA/2 Mouse (DBA/2 계열 마우스의 절개통증에서의 행동양상)

  • Bae, Da Hyoun;Park, Soo Seog;Woo, Young Cheol
    • The Korean Journal of Pain
    • /
    • v.21 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • Background: Because genetic manipulation is commonly accomplished in mice, mouse models for pain have advanced our understanding of the mechanisms of persistent pain. The purpose of this experimental study is to develop a mouse model for understanding incision induced postoperative pain. Methods: A longitudinal incision was made at the hindpaw of male DBA/2 mice. The withdrawal frequency(WF) from applications of von Frey filaments and the response frequency (RF) to blunt mechanical stimulation were examined in an incision group and a control grouP. The withdrawal latency (WL) to radiant heat and a pain score based on weight bearing were also measured. Tests were performed 1 day before incision, and 2 hours, 1-3 days, 5 days and 7 days after incision. Results: The WF for the strongest filament was $35.0{\pm}9.1%$ before incision and this increased to $100.0{\pm}0%$ at 2 hours and to $65.0{\pm}9.1%$ at 7 days after incision. The RF to the blunt stimulus was $4.1{\pm}4.1%$ before incision and $100.0{\pm}0.0%$ at 2 hours and $42.8{\pm}10.8%$ at 7 days after incision. The WL was $6.6{\pm}0.5sec$ before incision and $2.4{\pm}0.3sec$ at 2 hours and $5.9{\pm}0.6sec$ at 7 days after incision. The pain score increased from $1.1{\pm}0.8$ to $7.4{\pm}1.5$ at 2 days after incision. Conclusions: A mouse model of acute postoperative pain was developing by making a surgical incision in the mouse hindpaw. Mechanical hyperalgesia and allodynia lasting for several days demonstrate that this model has similarities to the human post-operative pain state. Future studies will allow us to further investigate the genetic and molecular mechanisms of incisional pain.

Trigeminal Neuralgia like Pain Behavior Following Compression of the Rat Trigeminal Ganglion

  • Yang, Gwi-Y.;Mun, Jun-H.;Park, Yoon-Y.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.157-164
    • /
    • 2009
  • We recently described a novel animal model of trigeminal neuropathic pain following compression of the trigeminal ganglion (Ahn et al., 2009). In our present study, we adapted this model using male Sprague-Dawley rats weighing between 250-260 g and then analyzed the behavioral responses of these animals following modified chronic compression of the trigeminal ganglion. Under anesthesia, the rats were mounted onto a stereotaxic frame and a 4% agar solution ($10{\mu}L$) was injected in each case on the dorsal surface of the trigeminal ganglion to achieve compression without causing injury. In the control group, the rats received a sham operation without agar injection. Air-puff, acetone, and heat tests were performed at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, 40, 55, and 70 days after surgery. Compression of the trigeminal ganglion produced nociceptive behavior in the trigeminal territory. Mechanical allodynia was established within 3 days and recovered to preoperative levels at approximately 60 days following compression. Mechanical hyperalgesia was also observed at 7 days after compression and persisted until the postoperative day 40. Cold hypersensitivity was established within 3 days after compression and lasted beyond postoperative day 55. In contrast, compression of the trigeminal ganglion did not produce any significant thermal hypersensitivity when compared with the sham operated group. These findings suggest that compression of the trigeminal ganglion without any injury produces prolonged nociceptive behavior and that our rat model is a useful system for further analysis of trigeminal neuralgia.

Antinociceptive Effect of Cyperi rhizoma and Corydalis tuber Extracts on Neuropathic Pain in Rats

  • Choi, Jae-Gyun;Kang, Suk-Yun;Kim, Jae-Min;Roh, Dae-Hyun;Yoon, Seo-Yeon;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.387-392
    • /
    • 2012
  • In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.