• Title/Summary/Keyword: heat tolerance

Search Result 228, Processing Time 0.031 seconds

Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea

  • Lee, SeokHyun;Do, ChangHee;Choy, YunHo;Dang, ChangGwon;Mahboob, Alam;Cho, Kwanghyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.334-340
    • /
    • 2019
  • Objective: The objective of this study was to investigate the genetic components of daily milk yield and to re-rank bulls in South Korea by estimated breeding value (EBV) under heat stress using the temperature-humidity index (THI). Methods: This study was conducted using 125,312 monthly test-day records, collected from January 2000 to February 2017 for 19,889 Holstein cows from 647 farms in South Korea. Milk production data were collected from two agencies, the Dairy Cattle Genetic Improvement Center and the Korea Animal Improvement Association, and meteorological data were obtained from 41 regional weather stations using the Automated Surface Observing System (ASOS) installed throughout South Korea. A random regression model using the THI was applied to estimate genetic parameters of heat tolerance based on the test-day records. The model included herd-year-season, calving age, and days-in-milk as fixed effects, as well as heat tolerance as an additive genetic effect, permanent environmental effect, and direct additive and permanent environmental effect. Results: Below the THI threshold (${\leq}72$; no heat stress), the variance in heat tolerance was zero. However, the heat tolerance variance began to increase as THI exceeded the threshold. The covariance between the genetic additive effect and the heat tolerance effect was -0.33. Heritability estimates of milk yield ranged from 0.111 to 0.176 (average: 0.128). Heritability decreased slightly as THI increased, and began to increase at a THI of 79. The predicted bull EBV ranking varied with THI. Conclusion: We conclude that genetic evaluation using the THI function could be useful for selecting bulls for heat tolerance in South Korea.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

The Relationship between Increased Cold Tolerance Resulting from Cool Clothing on Heat Tolerance (의복을 이용한 내한성 향상 훈련이 내열성에 미치는 영향)

  • 이종민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.4
    • /
    • pp.669-676
    • /
    • 1997
  • The purpose of this study is to examine the effect of the improved cold tolerance resulting from cool clothing in winter on heat tolerance in summer. Ten healthy women were divided into two groups, cold group(C group) (n=5) and warm group(W group) (n=5) . In the previous study, C group was proved that their cold acclimatization was achieved through wearing cool clothing from September to February of the following year, while Wgroup was not proved because of wearing warm clothing during same period. After February, no more clothing training was continued in two groups. To determine the heat tolerance, both groups were exposed from a thermoneutral environment(25$\pm$1$^{\circ}C$, 50$\pm$5% R.H.) to a hot environment (35$\pm$1$^{\circ}C$, 50$\pm$5% R.H.) before and after clothing training, respectively September in 1994 and truly in 1995. Rectal temperature, skin temperatures, thermal sensation and comfort were measured every 10 min., and Os uptake was measured at 10, 45, 85 min. after entering the chamber for 5 min. Body weight was measured before and after the experiment and amount of local sweat was measured during the 90 min long experiment. The results are as follows: Rectal temperatures in 35'c environment of C group were increased after training when compared with before clothing, while those of W group were not changed. But the changes of rectal temperature and heat production during 90 min in hot environment were almost the same in two groups after training. And mean skin temperatures, the changes of mean skin temperatures during 90 min in hot environment, total sweat amount and local sweat amount after training were also the same in two groups. From these results, it might be supposed that the heat loss of two groups were the same but the heat production, especially heat production during rest in C group was higher than in Wgroup. This fact suggests that the increase of rest heat production from cold acclimatization in winter is maintained to summer of the following year. And mild cold acclimatization coming from westing cool clothing does not have a negative effect on heat tolerance.

  • PDF

The Adaptability of Korean Farmers to Environment by the Seasonal Fluctuation of Energy Expenditure, Cold and Heat Tolerance (에너지대사의 계절변동과 내한내열성으로 본 한국농업인의 환경적응 능력)

  • Choi Jeong-Wha;Hwang Kyoung-Sook
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.2
    • /
    • pp.49-60
    • /
    • 2006
  • It was measured the energy expenditure in each season, the cold tolerance in winter and the heat tolerance in summer. Farmers' adaptability to the change of environment was compared with those of city-dwellers such as indoor workers and street cleaners to determine the effect of living environment, especially living temperature, on the health of human body. It turned out that farmers had experienced wide range of temperature that was higher in summer and lower in winter than indoor workers. Farmers and street cleaners showed seasonal adaptation in energy expenditure, which was high in winter and low in summer. However, indoor workers did not show seasonal changes. Energy expenditure had an inverse correlation with the temperature in work place where subjects spend the longer time in a day except in female indoor workers in Seoul. And It was proved that farmers and street cleaners had stronger cold tolerance and heat tolerance than indoor workers.

  • PDF

Effects of a Four-week Clothing Program for Improving Vascular Compliance on Heat Tolerance (혈압 관리를 위한 4주간의 착의훈련이 고혈압 전단계자의 내열성에 미치는 영향)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.3
    • /
    • pp.445-454
    • /
    • 2011
  • This study was performed on 5 prehypertensive male participants to investigate the effects of the clothing program for improving the vascular compliance on heat tolerance. The clothing program means the alternate stimulation of the temperature using clothes. The participants wore two different garments with $1.5^{\circ}C$ difference in the temperature inside clothing in a climatic chamber ($18.8{\pm}0.2^{\circ}C$, $38{\pm}3%RH$) alternately for 4 weeks. Heat tolerance tests were conducted in the climatic chamber of $35.2{\pm}0.5^{\circ}C$, $54{\pm}3%RH$ before and after the clothing program. The results were as follows. The $\overline{T}$sk, Tr and heart rate were lower in the post test than in the pre test (p<.01). The whole body and local sweat rates as well as systolic and diastolic blood pressures had reduced the tendencies in the post test. Participants felt less wet and more comfortable in the post test than in the pre test(p<.01). These results showed that the clothing program through the alternate stimulation of the temperature positively affected the improvement of heat tolerance.

Parental inheritance of heat stress tolerance during grain filling period in wheat

  • Ko, Chan Seop;Ou, Meong Kyu;Hyun, Jong Nae;Kim, Kyung Hun;Kim, Jin Baek;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.142-142
    • /
    • 2017
  • Wheat (Triticum asetivum L.) is one of the major grain crops worldwide. The reduced productivity ascribed by adverse environment is increasing the risk of food security. Wheat cultivars have been actively released by public side since 1960s in Korea. Each variety has been developed for superior regional adaptation, pest resistance and mostly high yield. Heat stress tolerance is one of the major parameters that threaten wheat production in Korea. Heat stress during grain filling period has been conceived as critical level and directly influences on wheat production. We evaluated 11 common wheat cultivars ("Baegjoong", "Dajung", "Goso", "Hanbaek", "Jokyoung", "Joeun", "Jopum", "Keumgang", "Olgeuru", "Sinmichal", "Uri") that were exposed to abnormally high temperature during the grain filling period. Each plant was grown well in a pot containing "Sunshine #4" soil in controlled phytotron facility set on $20^{\circ}C$ and 16 h photoperiod. At 9 day-after-anthesis (DAA9), plants were subjected to a gradual increase in temperature from $20^{\circ}C$ to $33^{\circ}C$ and maintained constantly at $33^{\circ}C$ for 5 days. After the treatment, plants were subjected to gradual decrease to normal temperature ($20^{\circ}C$) and continue to grow till harvest. Seeds were harvested from each tiller/plant. Total chlorophyll contents decrease level as well as grain parameters were measured to evaluate varietal tolerance to heat stress. We also divide each spike into five regions and evaluate grain characteristics among the regions in each spike. The obtained results allow us to classify cultivars for heat stress tolerance. The pedigree information showed that typical wheat lines provide either tolerance or susceptible trait to their off-springs, which enable breeders to develop heat stress tolerance wheat by appropriate parental choice.

  • PDF

Effect of Dry Heat Treatment of Red Ginseng and Red Ginseng Residue on Mycelial Growth and on Induced Tolerance of Fusarium oxysporum to Mercury Chloride (홍미삼과 홍삼정박의 건열처리가 Fusarium owsporum의 균사 생장과 승홍에 대한 내성에 미치는 영향)

  • Kim, Yeong-Ho;Park, Myeong-Han;Lee, Jong-Won
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.99-104
    • /
    • 1992
  • Korean red ginseng and water extract residue of red ginseng roots were treated with dry heat and incorporated in PDA medium to examine the effect of the materials on induced tolerance against mercury chloride and mycelial growth of Fusarium oxysporum. Ginseng residue was not effective in the inducement of tolerance to mercury chloride regardless of dry heat treatment. However, the heat treatment of ginseng and ginseng residues stimulated the mycelial growth of the fungus. The materials responsible for the detoxification appeared to be water-soluble. The stimulation of the fungal mycelial growth on the media by the heat treatment was highest in the water extract of ginseng. Due to the heat treatment, the mycelial growth was also slightly increased in n-hexane and methanol extracts of ginseng, compared with the ginseng fractions without dry heat treatment.

  • PDF

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae;Wi, Jiwoong;Im, Sungoh;Lim, Ka-Min;Lee, Hun-Dong;Jeong, Won-Joong;Kim, Geun-Joong;Kim, Chan Song;Park, Eun-Jeong;Hwang, Mi Sook;Choi, Dong-Woog
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.207-217
    • /
    • 2021
  • An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

Development of Wheat Breeding Material Mediated wide Hybridization Response to Climate Change

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.293-293
    • /
    • 2022
  • This study is to develop new wheat breeding material through wide hybridization with wild species harboring useful characteristics such as salt, heat, and drought tolerance. Leymus mollis, wild rye was used to improve wheat genetic quality. L. mollis, is a perennial plant harboring tolerance against salt, heat, and drought because L. mollis distributes on the seaside. The F1 hybrids were produced by crossing between common wheat (Triticum aestivum L., Chinese Spring) and L. mollis. Genomic in situ hybridization revealed that the F1 hybrids have L. mollis genome. For the evaluation of salt and drought tolerance, seeds from the F2 were used. Under 2% NaCl solution, the F3 wheat-Leymus addition plants with salt tolerance showed more tillering and longer roots than other F3 plants without salt tolerance. Also, the F3 plants with salt tolerance showed better shallow-rooted than other F3 plants without salt tolerance. Finally, the F3 plants with salt tolerance made seed-setting under 2% NaCl condition, but other F3 plants without salt tolerance were not. Under drought conditions, the F3 plants with drought tolerance showed longer culm and spike length than other F3 plants without drought tolerance and even those of Chinese Spring under well-water conditions. We evaluated and selected the F3 plants with salt or drought tolerance for generation advancement.

  • PDF

Quantitative Wear Training for the Improvement of Heat Tolerance in Summer (Part II) -Wear Training by Optimal Temperature Inside Clothing for Women in Their 20s- (여름철 내열성 증진을 위한 정량적 착의훈련의 효과 (제2보) -20대 여성의 의복내 온도를 지침으로-)

  • Lee, Hyo-Hyun;Choi, Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.4
    • /
    • pp.371-381
    • /
    • 2012
  • This study investigates quantitative wear training effects and involved 15 participants from a previous study (part 1) in May to September 2009. Before wear training, the subjects' rectal temperature, skin temperature, heart rate, blood pressure and local sweating were measured for 1 hour in a climate chamber ($39{\pm}1^{\circ}C$, $65{\pm}5%RH$, 0.3m/s) to evaluate heat tolerance. Subsequently, the subjects were divided into 3 groups that consisted of 5 participants. Group N (control-group) dressed the participants so that they felt comfortable (or cool). Group W and MW where participants underwent regular wear training for 10 weeks (5 days a week a total of 50 times). The intensity of the wear training for the participants of group MW was stronger than that for group W. A heat-tolerance experiment was performed after wear training. The results were as follows: 1. The participants of groups W and MW felt more comfortable after wear training than before wear training in the case of warmer $T_{cl}$. However, no significant differences were observed before and after wear training for group N. 2. The heat tolerance of the participants of groups W and MW was higher after wear training than before wear training. However, no significant difference was noted in this regard for group N. 3. The results showed the wear training effect (based on quantitative guidelines). The results show that the predicted optimal temperature inside clothing can enhance heat tolerance.