• Title/Summary/Keyword: heterogeneous cloud radio access networks

Search Result 3, Processing Time 0.018 seconds

Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

  • Simeone, Osvaldo;Maeder, Andreas;Peng, Mugen;Sahin, Onur;Yu, Wei
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.135-149
    • /
    • 2016
  • Cloud radio access network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units or remote radio heads, are centrally managed by a reconfigurable centralized "cloud", or central, unit. C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

A Resource Allocation Method for Supporting Multiple Sessions in a Mobile Terminal during Handover (핸드오버 시 이동 단말기에서 다중 세션 지원을 위한 자원 할당 방안)

  • Lee, Moon-Ho;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.57-66
    • /
    • 2012
  • LTE-Advanced network will form the high-speed IP backbone in collaboration with heterogeneous radio access networks for dynamic optimized resource utilization. In order to implement more innovative and attractive services such as U-Cloud streaming, LBS and mobile smart TV, a mobile terminal needs to support multiple sessions simultaneously. Efficient resource allocation schemes are necessary to maintain QoS of multiple sessions because service continuity may be defected by delay and information loss during handover. This paper proposes a resource allocation scheme to accommodate multiple sessions in a mobile terminal on handover period based on session priority mechanism. Simulation is focused on the forced termination probability of handover sessions. Simulation results show that our proposed method provides a better performance than the conventional method.