• Title/Summary/Keyword: hierarchical B-frame

Search Result 18, Processing Time 0.038 seconds

GOP Adaptation Coding of H.264/SVC Based on Precise Positions of Video Cuts

  • Liu, Yunpeng;Wang, Renfang;Xu, Huixia;Sun, Dechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2449-2463
    • /
    • 2014
  • Hierarchical B-frame coding was introduced into H.264/SVC to provide temporal scalability and improve coding performance. A content analysis-based adaptive group of picture structure (AGS) can further improve the coding efficiency, but damages the inter-frame correlation and temporal scalability of hierarchical B-frame to different degrees. In this paper, we propose a group of pictures (GOP) adaptation coding method based on the positions of video cuts. First, the cut positions are accurately detected by the combination of motion coherence (MC) and mutual information (MI); then the GOP is adaptively and proportionately set by the analysis of MC in one scene. In addition, we propose a binary tree algorithm to achieve the temporal scalability of any size of GOP. The results for test sequences and real videos show that the proposed method reduces the bit rate by up to about 15%, achieves a performance gain of about 0.28-1.67 dB over a fixed GOP, and has the advantages of better transmission resilience and video summaries.

Multilevel Editing for Hierarchical B-spline Curves using Rotation Minimizing Frames (RMF을 이용한 계층적 B-spline 곡선의 다단계 편집기법)

  • Zhang, Ci;Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • We present a new technique for multilevel editing of hierarchical B-spline curves. At each level, control points of a displacement function are expressed in the rotation minimizing frames (RMFs) [1] which are computed on nodal points of the curve at previous level. When the curve is edited at previous level, the corresponding RMFs are updated and the control points of the displacement function at current level are applied to the new RMFs, which maintains the relative details of the curve at current level to those of previous level. We demonstrate the effectiveness and robustness of the proposed technique using several experimental results.

Rate control to reduce bitrate fluctuation on HEVC

  • Yoo, Jonghun;Nam, Junghak;Ryu, Jiwoo;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.152-160
    • /
    • 2012
  • This paper proposes a frame-level rate control algorithm for low delay video applications to reduce the fluctuations in the bitrate. The proposed algorithm minimizes the bitrate fluctuations in two ways with minimal coding loss. First, the proposed rate control applies R-Q model to all frames including the first frame of every group of pictures (GOP) except for the first one of a sequence. Conventional rate control algorithms do not use any R-Q models for the first frame of each GOP and do not estimate the generated-bit. An unexpected output rate result from the first frame affects the remainder of the pictures in the rate control. Second, a rate-distortion (R-D) cost is calculated regardless of the hierarchical coding structure for low bitrate fluctuations because the hierarchical coding structure controls the output bitrate in rate distortion optimization (RDO) process. The experimental results show that the average variance of per-frame bits with the proposed algorithm can reduce by approximately 33.8% with a delta peak signal-to-noise ratio (PSNR) degradation of 1.4dB for a "low-delay B" coding structure and by approximately 35.7% with a delta-PSNR degradation of 1.3dB for a "low-delay P" coding structure, compared to HM 8.0 rate control.

  • PDF

MPEG Video Segmentation using Hierarchical Frame Search (계층적 프레임 탐색을 이용한 MPEG 비디오 분할)

  • 김주민;최영우;정규식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.215-218
    • /
    • 2000
  • 디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.

  • PDF

Frame-rate Up-conversion using Hierarchical Adaptive Search and Bi-directional Motion Estimation (계층적 적응적 탐색과 양방향 움직임 예측을 이용한 프레임율 증가 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, we propose a frame-rate up-conversion method for temporal quality enhancement. The proposed method adaptively changes search range during hierarchical motion estimation and reconstructs hole regions using the proposed bi-direction prediction and linear interpolation. In order to alleviate errors due to inaccurate motion vector estimation, search range is adaptively changed based on reliability and for more accurate, motion estimation is performed in descending order of block variance. After segmentation of background and object regions, for filling hole regions, the pixel values of background regions are reconstructed using linear interpolation and those of object regions are compensated based on the proposed hi-directional prediction. The proposed algorithm is evaluated in terms of PSNR with original uncompressed sequences. Experimental results show that the proposed algorithm is better than conventional methods by around 2dB, and blocky artifacts and blur artifacts are significantly diminished.

FPGA Design of Open-Loop Frame Prediction Processor for Scalable Video Coding (스케일러블 비디오 코딩을 위한 Open-Loop 프레임 예측 프로세서의 FPGA 설계)

  • Seo Young-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.534-539
    • /
    • 2006
  • In this paper, we propose a new frame prediction filtering technique and a hardware(H/W) architecture for scalable video coding. We try to evaluate MCTF(motion compensated temporal filtering) and hierarchical B-picture which are a technique for eliminate correlation between video frames. Since the techniques correspond to non-causal system in time, these have fundamental defects which are long latency time and large size of frame buffer. We propose a new architecture to be efficiently implemented by reconfiguring non-causal system to causal system. We use the property of a repetitive arithmetic and propose a new frame prediction filtering cell(FPFC). By expanding FPFC we reconfigure the whole arithmetic architecture. After the operational sequence of arithmetic is analyzed in detail and the causality is imposed to implement in hardware, the unit cell is optimized. A new FPFC kernel was organized as simple as possible by repeatedly arranging the unit cells and a FPFC processor is realized for scalable video coding.

Joint Source/Channel Coding Based on Two-Dimensional Optimization for Scalable H.264/AVC Video

  • Li, Xiao-Feng;Zhou, Ning;Liu, Hong-Sheng
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two-dimensional optimization on the quality layers of each frame in a rate-distortion (R-D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end-to-end R-D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi-based algorithm. The R-D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R-D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non-progressive modes respectively.

MPEG Video Segmentation using Two-stage Neural Networks and Hierarchical Frame Search (2단계 신경망과 계층적 프레임 탐색 방법을 이용한 MPEG 비디오 분할)

  • Kim, Joo-Min;Choi, Yeong-Woo;Chung, Ku-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.114-125
    • /
    • 2002
  • In this paper, we are proposing a hierarchical segmentation method that first segments the video data into units of shots by detecting cut and dissolve, and then decides types of camera operations or object movements in each shot. In our previous work[1], each picture group is divided into one of the three detailed categories, Shot(in case of scene change), Move(in case of camera operation or object movement) and Static(in case of almost no change between images), by analysing DC(Direct Current) component of I(Intra) frame. In this process, we have designed two-stage hierarchical neural network with inputs of various multiple features combined. Then, the system detects the accurate shot position, types of camera operations or object movements by searching P(Predicted), B(Bi-directional) frames of the current picture group selectively and hierarchically. Also, the statistical distributions of macro block types in P or B frames are used for the accurate detection of cut position, and another neural network with inputs of macro block types and motion vectors method can reduce the processing time by using only DC coefficients of I frames without decoding and by searching P, B frames selectively and hierarchically. The proposed method classified the picture groups in the accuracy of 93.9-100.0% and the cuts in the accuracy of 96.1-100.0% with three different together is used to detect dissolve, types of camera operations and object movements. The proposed types of video data. Also, it classified the types of camera movements or object movements in the accuracy of 90.13% and 89.28% with two different types of video data.

Fast Macroblock Mode Selection Algorithm for B Frames in Multiview Video Coding

  • Yu, Mei;He, Ping;Peng, Zongju;Zhang, Yun;Si, Yuehou;Jiang, Gangyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.408-427
    • /
    • 2011
  • Intensive computational complexity is an obstacle of enabling multiview video coding for real-time applications. In this paper, we present a fast macroblock (MB) mode selection algorithm for B frames which are based on the computational complexity analyses between the MB mode selection and reference frame selection. Three strategies are proposed to reduce the coding complexity jointly. First, the temporal correlation of MB modes between current MB and its temporal corresponding MBs is utilized to reduce computational complexity in determining the optimal MB mode. Secondly, Lagrangian cost of SKIP mode is compared with that of Inter $16{\times}16$ modes to early terminate the mode selection process. Thirdly, reference frame correlation among different Inter modes is exploited to reduce the number of reference frames. Experimental results show that the proposed algorithm can promote the encoding speed by 3.71~7.22 times with 0.08dB PSNR degradation and 2.03% bitrate increase on average compared with the joint multiview video model.

The Hierarchical Modeling Approach for Integrating the Enterprise Activity Model (기업 액티비티 모델 통합을 위한 계층적인 모델링 접근법)

  • Jun, H.B.;Suh, H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.157-168
    • /
    • 2001
  • The description of enterprise activities is the basis fur process improvement and information system building. To describe such activities, it is necessary to model the enterprise activities from the abstraction level to the implementation level in a stepwise and integrated form. For this reason, several modeling approaches have been proposed. However, most of them lacked the stepwise or integration aspects although some of them covered overall levels. This study proposes the hierarchical modeling approach for integrating the enterprise activity model from the abstraction level to the implementation level systematically. It is composed of five modeling levels such as function level, process level, task level, document workflow level, and event flow level. This study discusses the definition and characteristics of each level and compare our modeling frame with other modeling methodologies in case study.

  • PDF