• Title/Summary/Keyword: high density cell cultivation

Search Result 63, Processing Time 0.026 seconds

High Cell Density Cultivation of Pseudomonas putida BM01 Using Glucose

  • Kim, Guk Jin;In Young Lee;Dae Keon Choi;Sung Chul Yoon;Young Hoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.221-224
    • /
    • 1996
  • Pseudomonas putida BM01 was grown efficiently on glucose as the sole carbon source with a supply of a nitrogen source in pH-stat mode using a low setpoint limit. A final cell concentration of 100 g/l was obtained in 30 h of fed-batch cultivation by controlling glucose concentration within the range of 5-20 g/l and maintaining dissolved oxygen tension above 10$%$ saturation using pure oxygen. This high cell density culture technique is believed highly useful for the production of poly(3-hydroxyalkanoates) by this strain.

  • PDF

Expression profile analysis of metabolism of Escherichia coli during high cell density cultivation using DNA chip

  • Yun, Seong-Ho;Lee, Sang-Yeop;Im, Geun-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.600-603
    • /
    • 2000
  • DNA chip containing 207 E. coli genes related to important metabolisms such as (TCA cycle, glycolysis, fermentation and etc) were used to carry out a comprehensive investigation of the change in metabolism and physiology during high cell density culture of E. coli by fed-batch cultivation.

  • PDF

High Cell Density Cultivation of Bifidobacterium longum Using a Calcium Carbonate-Alginate Beads System

  • Yu, Won-Kyu;Kim, Ji-Youn;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.444-448
    • /
    • 2002
  • A $CaCO_3$-alginate beads system was developed for high cell density cultivation of Bifidobacterium longum and the cost-effective media were also screened. In batch process with $CaCO_3$, beads, two strains of B. longum showed both the highest viable cells and optical density in TPY medium, resulting in maximum optical density and viable cell counts of 12.40, $2.22{\times}10^10$ cfu/ml for B. longum ATCC 15707 and 13.71, $3.93{\times}10^10$ cfu/ml for B. longum HLC 3742. Released size distribution, according to $CaCO_3$-alginate bead size preparation, was smaller than others. These results were also examined by observing their morphology. The skim milk-based medium was most adequate to cultivate B. longum as the cheapest medium, and $10\%$ skim milk supplemented with $2\%$ glucose and $1\%$ yeast extract was a suitable medium, supporting the growth to $5.57{\times}10^10$ cfu/ml for ATCC 15707 and $6.82{\times}10^9$ cfu/ml for HLC 3742. During the long-term storage at $4^{\circ}C\;and\;-20{\circ}C$, B. longum cultivated with $CaCO_3$ beads had the highest stability. Consequently, $CaCO_3$-alginate beads buffer was found to be useful not only to cultivate B. longum but also to preserve cultures.

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF

Pseudomonas putida의 고농도 배양을 위한 발효 기초 연구

  • Kim, Hui-Jeong;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.341-342
    • /
    • 2001
  • High cell density cultivation of Pseudomonas putida is often necessary for the VOC removal bioreactor. Supplying the feeding solution of C and N sources could accelerate the growth of cells. We changed the component of feeding solution and feeding time. showing that P. putida could be grown to a high density.

  • PDF

High Density Cell Cultivation of Escherichia coli in a Dual Hollow Fiber Bioreactor (이중실관 반응기에서 E. coli의 고농도 배양)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Kim, In-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.209-212
    • /
    • 1985
  • The cell density and packing characteristics of Escherichia coli immobilized in a dual hollow fiber bioreactor consisting of outer silicone membrane for oxygen transport and three inner isotropic polypropylene hollow fibers for substrate transport were investigated. The cells have grown forming the layer like animal tissue in a nearly 100% packing density. The dry biomass density was 550g/liter of void volume for cell growth, which was the highest among the biomass densities ever reported.

  • PDF

Characteristics of Immobilized Culture of Mentha piperita Cells for Oil Production

  • Ha, Won Ho;Gun Jo Woo;Hyong Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.132-136
    • /
    • 1996
  • To investigate the characteristics of immobilized peppermint (Mentha piperita) cells, dry cell weight (DCW), change of cell viability, and oil productivity of the immobilized cells were determined. Peppermint cells were immobilized in polyurethane (PU) foams of $5{\times}5{\times}5$ mm and cultured in a shaking flask. The maximum DCW was 2.1 mg per foam piece after 20 days of cultivation and the cell density was approximately 420 mg per flask containing 200 foams in 200 ml medium. For the first five days of cultivation, the cell viability was about 80$%$ and decreased to 70$%$ during 5 to 20 days of cultivation. The maximum oil productivity, 148 mg/l was achieved after 40 days of cultivation. The immobilized cells were also cultivated in a bioreactor, equipped with a round spiral type impeller, containing 2, 400 PU foams. The cell viability after 30 days of cultivation with chitosan as an elicitor in the bioreactor was 67$%$ and DCW was 2.0 mg per foam piece. Though the cell viability was relatively high in the bioreactor system, the oil productivity was relatively lower than that of the flask system.

  • PDF

Thiobacillus ferrooxidans 의 전기화학적 배양에 의한 셀밀도 증가

  • Jang, Yeong-Seon;Jeong, Seung-Ho;Lee, Gwang-Yeon;Park, Don-Hui;Jeong, Sang-Mun;Cha, Jin-Myeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.428-432
    • /
    • 2003
  • In this study, we demonstrated that high cell density for Thiobacillus ferrooxidans could be obtained when optimal conditions for cell growth were maintained using electrochemical cultivation with sufficient aeration. The optimal pH for cultivation were determined to be $2.0{\pm}0.05$. When the current and potential were set to 0.15A, 4V, the Pt electrode reduced $Fe^{3+}$ to $Fe^{2+}$ with efficiency of 85%. Under these condition, cells at an initial density of 0.0025 g-dry cell/L grew for 8days until the cell density was 0.0576 g-dry cell/L. this was a 7-fold increase over conventional batch culture.

  • PDF

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF