• Title/Summary/Keyword: high power factor

Search Result 1,897, Processing Time 0.059 seconds

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

Power Factor improvement of Power Conversion Equipment for High Pressure Sodium Lamps (고압 나트륨 램프 구동용 전력변환장치의 역률 개선)

  • Lee, S.H.;Suh, K.Y.;Lee, H.W.;Lee, S.H.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.147-150
    • /
    • 2002
  • HPSL(High Pressure Sodium lamp)have attracted much attention in recent years, because they offer high luminous efficiency and very long life. Recently, AC-DC converters have been widely as power factor improvement circuits in the power conversion equipment An application of the ZVT-PWM(Zero Voltage Transition Pulse Width Modulation) boost converter, which has great advantage on miniaturization and high power density, to the power factor improvement circuit of the HPSL inverter are described to identify the power factor correction characteristics of the inverter. In this paper the series-parallel resonant inverter(electronic ballast) for driving a HPS lamp is discussed. Finally, a power factor corrector is cascaded in front of the electronic ballast. Consequently, a high power factor above 0.99 and low THD on the line current can be achieved.

  • PDF

A New Zero-Current Switched High Power Factor Rectifier for Power Conversion System for Telecommunication (통신용 전력변환장치를 위한 새로운 영전류 스위칭 방식의 고 역률 정류기)

  • Moon, Gun-Woo;Jung, Young-Seok;Kim, Marn-Go;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.132-134
    • /
    • 1993
  • A new Zero-Current Switched(ZCS) High Power Factor Rectifier for the. power factor correction is proposed. The proposed single phase rectifier enables a zero-current switching operation of all the power devices allowing the circuit to operate at high switching frequencies and high power levels. A dynamic model and a predictive current control technique for the ZCS-High Power Factor Rectifier(HPFR) are proposed. With the proposed dynamic model, an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor.

  • PDF

A study on the characteristics of high power factor AC/DC converter with Feedforward control (Feedforward 제어에 의한 고역률 AC/DC 컨버터의 톡성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Ku;Sin, Seung-Soo;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1244-1246
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0.65. To improve with this problem. the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this case single-stage PFC converter has been used DC-DC converter with boost converter. However in this paper, it is studied flyback converter of high power factor, high efficiency by feedforward control. Also, the validity of designed and manufactured high power factor flyback converter is confirmed by simulation and experimental results.

  • PDF

New High Efficiency Zero-Voltage-Switching AC-DC Boost Converter Using Coupled Inductor and Energy Recovery Circuit (결합 인덕터 및 에너지 회생 회로를 사용한 새로운 고 효율 ZVS AC-DC 승압 컨버터)

  • Park, Gyeong-Su;Kim, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.501-507
    • /
    • 2001
  • In this paper, new high-efficiency zero voltage switching (ZVS) AC-DC boost converter is proposed to achieve power factor correction by simplifing energy recovery circuit. A lot of high power factor correction circuits have been proposed and applied to increase input power factor and efficiency. Most of these circuits may obtain unity power factor and achieve sinusoidal current waveform with zero voltage or/and zero current switching. However, it is difficult for them to obtain low cost, small size, low weight, and low noise. The topology proposed to improve these problems can compact the devices in circuit and can achieve high efficiency ZVS AC-DC boost converter. Simulation and experimental results show that this topology is capable of obtaining high power factor and increasing the efficiency of the system.

  • PDF

Design of Power Factor Correction IC for 1.5kW System Power Module (1.5kW급 System Power Module용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Park, Hyun-Il;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.499-500
    • /
    • 2008
  • In this paper, we design and implement the monolithic power factor correction IC for system power modules using a high voltage(50V) CMOS process. The power factor correction IC is designed for power applications, such as refrigerator, air-conditioner, etc. It includes low voltage logic, 5V regulator, analog control circuit, high-voltage high current output drivers, and several protection circuits. And also, the designed IC has standby detection function which detects the output power of the converter stage and generates system down signal when load device is under the standby condition. The simulation and experimental results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

A study on control strategy of power factor correction for AC-DC power conversion system (AC-DC 전력변환기의 역률개선 제어기법에 관한 연구)

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • The high power factor converters are classified step-up, step-up-down and step-down converter, The power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. And the power system brings on a high efficiency and high power factor. When a switch of the step down converter is operated with a commercial frequency(60Hz), a reactor using the converter is gone with a great number of harmonics waveforms of low grade. As results of this, the converter is decreased input power factor and is increased system size. To improved these, this paper proposes a PSM(Pulse Size Modulation) control strategy operated with high power factor.

  • PDF

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

Design of High Quality Regulator with High Efficiency Based on Half-Bridge Topology (하프 브릿지 컨버터를 기반으로 한 고효율을 갖는 고역률 정류기의 설계)

  • 이준영;문건우;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.400-409
    • /
    • 1997
  • Design of single stage AC/DC converter with high power factor and high efficiency based on half-bridge topology for low power application is proposed. To obtain design equations, modelling and detailed analysis are performed. The proposed converter gives and power factor and high efficiency by employing aynchronous rectifiers. To verify the performances of the proposed converter 90W-converter has been designed. This prototype converter meets IEC555-2 requirements with near unity power factor.

  • PDF

A Study on Power Factor Correction of CO2 Arc Welder Using Three Phase Switch Mode Converter (3상 AC/DC 스위치 모드 승압형 컨버터를 이용한 CO2 아크 용접기 역률개선에 관한 연구)

  • 이정훈;김재문;안정준;이상석;원충연;김세찬
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.149-153
    • /
    • 1998
  • In this paper A switched mode AC/DC three phase boost converter with high power factor and sinusoidal input current waveform is analyzed and simulated. The proposed converter retain high power factor and sinusoidal input current waveform even under electric arc welder load. It is shown that experimental result and simulation waveform yield a sinusoidal input current waveform at high power factor.

  • PDF