• Title/Summary/Keyword: high-frequency emphasis filter

Search Result 9, Processing Time 0.03 seconds

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

An Enhancement of Medical Image Using Optimized High-Frequency Emphasis Filter (최적화된 고주파 강조 필터를 이용한 의료영상의 개선)

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.698-704
    • /
    • 2013
  • The image process for image enhancement applies differently the same algorithm for each application. So, the optimized value for each application is required. In this paper, the X-ray medical image using a high-pass filter was improved edges. The result image was improved edge and the contrast of flat area using a constant multiplier and offset. Therefore, the high-frequency emphasis filter optimized for medical image is required. These optimized values are the gaussian high-pass filter, the distance of cutoff frequency=0.05 and offset=0.5. From the result of optimaized simulation, The proposed method has enhanced contrast and edge of the image in the contrast of existing mothods.

An Optimal Method to Improve the Visual Quality of Medical Images

  • Shin, Choong-ho;Jung, Chai-yeoung
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 2015
  • As the visual quality of X-ray images is a critical reference for the accuracy of the clinical diagnosis, the methods to improve the quality of X-ray images have been investigated. Among many existing methods, using frequency domain filter is a very powerful method to improve the visual quality of images. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the subjected image. The medical X-ray images using the optimal high pass filter has shown improved edges. Further, the optimal high frequency emphasis filter has shown the improved contrast of flat areas by using the result image from the optimal high pass filter. Also the resulting images of the global contrast have improved by the histogram equalization. As a result, the proposed methods have shown enhanced contrast and edges of the images with noise canceling effect.

An Optimal Algorithm for Enhancing the Contrast of Chest Images Using the Frequency Filters Based on Fuzzy Logic

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • Chest X-ray image cannot be focused in the same manner as optical lenses and the resultant image generally tends to be slightly blurred. Therefore, appropriate methods to improve the quality of chest X-ray image have been studied in this paper. As the frequency domain filters work well for slight blurring and moderate levels of additive noises, we propose an algorithm that is particularly suitable for enhancing chest image. First, the chest image using Gaussian high pass filter and the optimal high frequency emphasis filter shows improvements in the edges and contrast of the flat areas. Second, as compared to using histogram equalization where each pixel of chest image is characterized by a loss of detail and much noises, in using fuzzy logic, each pixel of chest image shows the detail preservation and little noise.

A Visual Quality Enhancement of Medical Image Using Optimized High-Frequency Emphasis Filter (고주파 강조필터를 이용한 의료영상의 화질향상을 위한 최적화 방법)

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1681-1685
    • /
    • 2014
  • The visual quality of medical image is an important factor for diagnosis accuracy. Therefore, the methods to improve the quality of medical image have studied. Among them, frequency domain filter is very powerful method to impove the visual quality of image. In this paper, the X-ray medical image using optimized high-pass filter was improved edges. The result image was improved edge and contrast of flat area using optimized high frequency emphasis filter. At last, the result image is to minimize the noise using the minimum mean square error(MMSE) filter. As a result, the proposed method has enhanced contrast and edge of the image in the contrast of existing filters, with the noise canceling effect.

An Enhancement of Image Segmentation Using Modified Watershed Algorithm

  • Kwon, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose a watershed algorithm that applies a high-frequency enhancement filter to emphasize the boundary and a local adaptive threshold to search for minimum points. The previous method causes the problem of over-segmentation, and over- segmentation appears around the boundary of the object, creating an inaccurate boundary of the region. The proposed method applies a high-frequency enhancement filter that emphasizes the high-frequency region while preserving the low-frequency region, and performs a minimum point search to consider local characteristics. When merging regions, a fixed threshold is applied. As a result of the experiment, the proposed method reduced the number of segmented regions by about 58% while preserving the boundaries of the regions compared to when high frequency emphasis filters were not used.

A Study on the Estimation of Glottal Spectrum Slope Using the LSP (Line Spectrum Pairs) (LSP를 이용한 성문 스펙트럼 기울기 추정에 관한 연구)

  • Min, So-Yeon;Jang, Kyung-A
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • The common form of pre-emphasis filter is $H(z)\;=\;1\;- az^{-1}$, where a typically lies between 0.9 and 1.0 in voiced signal. Also, this value reflects the degree of filter and equals R(1)/R(0) in Auto-correlation method. This paper proposes a new flattening algorithm to compensate the weaked high frequency components that occur by vocal cord characteristic. We used interval information of LSP to estimate formant frequency. After obtaining the value of slope and inverse slope using linear interpolation among formant frequency, flattening process is followed. Experimental results show that the proposed algorithm flattened the weaked high frequency components effectively. That is, we could improve the flattened characteristics by using interval information of LSP as flattening factor at the process that compensates weaked high frequency components.

  • PDF

The Design Simulation for Manufacture of High Frequence Ceramic Filter (고주파용 세라믹 필터의 제작을 위한 디자인 해석)

  • 이수호;석정영;류기흥;사공건;윤광희;류주현;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.418-421
    • /
    • 2001
  • The ceramic filters were developed using technology similar to that of quartz crystal and electro- mechanical filter. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations. Nakazawa developed a double-mode resonator as two acoustically coupled single resonators. And he developed 10.7MHz crystal filters using multi-energy trapping mode of thickness shear vibration. He succeeded in realizing a two-pole band pass filter response without external inductance by splitting a dot electrode to creak coupled symmetric and anti- symmetric vibration modes. Accordingly, the simulation for ceramic (inter were important. So that, this paper were investigated the pass frequency of filter on the electrode length and thickness of ceramic.

  • PDF

The Flattening Algorithm of Speech Spectrum by Quadrature Mirror Filter (QMF에 의한 음성스펙트럼의 평탄화 알고리즘)

  • Min, So-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.907-912
    • /
    • 2006
  • Pre-emphasizing the speech compensates for falloff at high frequencies. The most common form of pre-emphasis is y(n)=s(n)-A${\cdot}$s(n-1), where A typically lies between 0.9 and 1.0 in voiced signal. And, this value reflects the degree of pre-emphasis and equals R(1)/R(0) in conventional method. This paper proposes a new flattening method to compensate the weaked high frequency components that occur by vocal cord characteristic. We used QMF(Quardrature Mirror Filter) to minimize the output signal distortion. After using the QMF to compensate high frequency components, flattening process is followed by R(1)/R(0) at each frame. Experimental results show that the proposed method flattened the weaked high frequency components effectively than auto correlation method. Therefore, the flattening algorithm will apply in speech signal processing like speech recognition, speech analysis and synthesis.

  • PDF