• Title/Summary/Keyword: high-throughput system

Search Result 622, Processing Time 0.028 seconds

High throughput sorting(HTS) system using a cantilever-type electrode array (캔틸레버(Cantilever) 형태의 전극 어레이(array)를 이용한고속 분리 시스템)

  • Lee, Jung-Hun;Kim, Young-Ho;Kim, Young-Geun;Kim, Byung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • A high-throughput sorting (HTS) system has been designed to separate target particles using a negative dielectrophoretic (n-DEP) force. The system consists of a meso-sized channel and a cantilever-type electrode(CE) array designed to separate a large number of target particles by discerning subtle difference of weight and dielectric material property of the particles. Using the polystyrene beads with various sizes of 10, 25 and $50{\mu}m$, the developed system exhibits high-throughput sorting of about 200 beads/sec and more than 80 % of separation efficiency.

High Throughput Radix-4 SISO Decoding Architecture with Reduced Memory Requirement

  • Byun, Wooseok;Kim, Hyeji;Kim, Ji-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.407-418
    • /
    • 2014
  • As the high-throughput requirement in the next generation communication system increases, it becomes essential to implement high-throughput SISO (Soft-Input Soft-Output) decoder with minimal hardware resources. In this paper, we present the comparison results between cascaded radix-4 ACS (Add-Compare-Select) and LUT (Look-Up Table)-based radix-4 ACS in terms of delay, area, and power consumption. The hardware overhead incurred from the retiming technique used for high speed radix-4 ACS operation is also analyzed. According to the various analysis results, high-throughput radix-4 SISO decoding architecture based on simple path metric recovery circuit is proposed to minimize the hardware resources. The proposed architecture is implemented in 65 nm CMOS process and memory requirement and power consumption can be reduced up to 78% and 32%, respectively, while achieving high-throughput requirement.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

The Latest Improvements in Evaporation System for Mass Production of OLED TV

  • Yoon, Hyung-Seok;Kang, Chang-Ho;Yoon, Hyung-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1168-1170
    • /
    • 2008
  • For OLED to be a key role in the television market, a manufacturing evaporation system with robustness and high throughput is indispensable. ANS is currently developing manufacturing equipments for OLED TVs. ANS's latest progress of a vertical high throughput in-line evaporation system for large substrate will be presented.

  • PDF

A Study on The Throughput Improvement of Go-Back-N AR in digital Data Transmission (디지털 데이터 전송에서의 G-Back-N-ARQ 방식에 대한 Throughput 효율개선에 관 한 연구)

  • 송평중;한영열
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1982.10a
    • /
    • pp.37-39
    • /
    • 1982
  • In this paper, we deal with theoretical tools to improve the throughput efficiency of the conventional Go-Back-N ARQ system by performing block retransmission efficiently under high error rate, and two variations of the system is proposed.

  • PDF

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

Development of a FRET-based High-Throughput Screening System for the Discovery of Hsp90 Inhibitors

  • Oh, Sang-Mi;Ko, Yeon-Jin;Lee, Han-Jae;Kim, Jong-Hoon;Chung, Young-Sun;Park, Seung-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3229-3232
    • /
    • 2011
  • A FRET-based high-throughput screening system was developed for the discovery of competitive smallmolecule Hsp90 inhibitors. The biarsenical fluorescein derivative FlAsH and dabcyl-conjugated Hsp90 inhibitor GM were employed as the FRET donor and quencher, respectively. The spatial proximity perturbation between FlAsH-labeled Hsp90N and GM-dabcyl upon treatment of a small molecule led to changes in the FRET-induced fluorescence, monitored in a high-throughput fashion.

Development of Web-based High Throughput Computing Environment and Its Applications (웹기반 대용량 계산환경 구축 및 응용사례)

  • Jeong, Min-Joong;Kim, Byung-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.719-724
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures.

  • PDF

Pilot Symbol Assisted High Speed Packet Transmission System based on Adaptive OFDM in Broadband Mobile Channel

  • Ahn, Chang-Jun;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • 4G mobile communication system requires the throughput of 10-100Mbps. Adaptive modulated OFDM system is promising technique for increasing the throughput. In the pilot symbol assisted high-speed packet transmission system, the data symbol duration is generally considered to be small compared to the coherence time. However, OFDM symbol duration is longer than the symbol duration of a single carrier system, so that the packet duration of the pilot symbol assisted high speed packet transmission system is long. In this case, the change of channel conditions is too fast to be accurately estimated by channel estimator at the receiver in high Doppler frequency, so that many errors occur during demodulation, especially with the data symbols at the end of each packet. In this paper, we consider the BER at various instantaneous $E_b/N_o$ that includes the demodulation errors in high Doppler frequency. When the coherence time is ten times longer than the duration of a single packet, the channel can be closely approximated as an AWGN channel. Otherwise, the approximation breaks down and the above-mentioned errors that occur during demodulation must be taken into consideration. In this paper, we propose the pilot symbol assisted high speed packet transmission system based on adaptive OFDM using a novel lookup table to consider the demodulated errors and evaluate the throughput performance.