• Title/Summary/Keyword: high-velocity impact

Search Result 433, Processing Time 0.028 seconds

High-Velocity Impact Behavior Characteristics of Aluminum 6061 (알루미늄 6061의 고속 충격 거동 특성 연구)

  • Byun, Seon-Woo;Ahn, Sang-Hyeon;Baek, Jun-Woo;Lee, Soo-Yong;Roh, Jin-Ho;Jung, Il-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.465-470
    • /
    • 2022
  • This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment (고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구)

  • 김문생;김남식;박승범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

Influence of Reinforced Fiber on Local Failure of the Concrete subjected to Impact of High-Velocity Projectile (고속 비상체 충돌에 의한 콘크리트의 국부파괴에 미치는 혼입 섬유의 영향)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Jung-Hyun;Lee, Young-Wook;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.139-140
    • /
    • 2014
  • The purpose of this study in to evaluate relationship between mechanical properties of materials and fiber type by reinforced fiber with high-velocity impact fracture behavior of fiber reinforced concrete. As a result, for fracture behavior by high-velocity impact, it is considered that impact fracture behavior is not affected by static mechanical properties directly but affected by fiber type and density of the number of fiber. It is necessary to consider type, shape, mechanical properties and the number of fiber with flexural and tensile performance for the evaluation on impact resistance performance of fiber reinforced concrete.

  • PDF

A Study on the Stiffened Rectangular Plate under High Velocity Impact (고속발사 충격을 받는 보강사각판의 연구)

  • Woo, Dae-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.350-357
    • /
    • 2012
  • The velocity response of stiffened rectangular plate under high velocity impact was studied. Numerical simulation was conducted on the stiffened plate with four stiffeners under various impact positions. Considered stiffener types were rib, I, hat and T stiffener. For the center impact position of I stiffened plate, the simulated residual velocity was 365.6 m/s with the initial projectile velocity 500 m/s. The reinforcing characteristic of I stiffened plate was excellent among four stiffeners.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Compare Characteristics of Neck Injuries between Rear Impact Pulse and NCAP Pulse (후방 충돌 펄스와 NCAP 펄스 차이로 인한 목상해 특성 비교)

  • Kim, Jong Kon;Park, Jong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.7-12
    • /
    • 2017
  • The whiplash is the most important issue of low speed rear-impact. So auto makers are committed to developing a seat to improve whiplash injury. Most NCAP tests have been used by same pulse (Mid Velocity 16kph). Only Euro NCAP uses different pulse that consists of Low, Mid, High velocity. But Euro NCAP also uses same pulse in Mid velocity as other NCAP test. That Mid velocity NCAP pulse was made by rear impact that has 90's vehicle structure properties. That pulse was used until now days. However these days, auto maker use more high tensile steel than 90's as customer and society demand more fuel efficiency and light vehicle with good safety structure. So modern vehicles have different pulse patterns of rear impact than NCAP pulse and 90's vehicle crash properties. In this paper, the test was conducted by following condition. Target car was impacted by the rigid barrier with certain velocity. Finally target vehicle gained delta V 16kph which was same velocity as NCAP Mid Velocity pulse. It is critical velocity which occur long period neck injury. It is very different pulse that was gained by real car impact from NCAP pulse. And it has higher peak G with high fluctuation and short duration than NCAP pulse.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.