• 제목/요약/키워드: high-velocity impact

검색결과 433건 처리시간 0.028초

알루미늄 6061의 고속 충격 거동 특성 연구 (High-Velocity Impact Behavior Characteristics of Aluminum 6061)

  • 변선우;안상현;백준우;이수용;노진호;정일영
    • 한국항공우주학회지
    • /
    • 제50권7호
    • /
    • pp.465-470
    • /
    • 2022
  • 본 논문은 알루미늄 6061의 고속 충격 해석과 고속 충격 시험 결과를 비교 검증하여 금속 재료의 고속 충격에 의한 거동 특성을 연구하였다. 고속 충격 해석을 위해 만능재료시험기를 이용한 준정적 시험과 Hopkinson bar를 이용한 동적 시험을 통해 Huh-Kang 모델과 Johnson-Cook 파손 모델의 계수를 구했다. LS-DYNA 프로그램 해석을 이용하여 관통 속도와 형상을 결과로 예측했고 고속 충격 시험기를 이용한 시험 결과와 비교하였다. 이를 바탕으로 항공기 가스터빈 엔진 블레이드 컨테인먼트 평가 연구에 적용하고자 한다.

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측 (Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test)

  • 유원영;김인걸;이석제;김종헌
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.21-28
    • /
    • 2013
  • 본 논문에서는 유효 면적의 제한이 있는 복합재 적층판의 탄도한계속도를 예측하였다. 탄도한계속도를 예측하기 위해 정적압입 관통실험과 고속충격 실험 그리고 준실험식을 이용하였다. 정적압입 관통실험을 통해 하중-변위 데이터를 취득하고 이를 이용해서 관통에너지를 측정하였다. 고속충격 실험을 통해 실제 관통 속도 및 관통 에너지를 측정하였다. 정적압입 관통실험과 고속충격 실험을 통해 구한 에너지를 이용해 준실험식을 만들고, 준실험식과 고속충돌 실험결과와 비교해 보았다. 위 방법을 이용해 탄도한계속도를 예측하였고 정적압입 관통 실험과 준실험식에 의한 탄도한계속도 예측의 타당성을 확인하였다.

고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구 (Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment)

  • 김문생;김남식;박승범
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

고속 비상체 충돌에 의한 콘크리트의 국부파괴에 미치는 혼입 섬유의 영향 (Influence of Reinforced Fiber on Local Failure of the Concrete subjected to Impact of High-Velocity Projectile)

  • 김홍섭;김규용;최경철;김정현;이영욱;한상휴
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.139-140
    • /
    • 2014
  • The purpose of this study in to evaluate relationship between mechanical properties of materials and fiber type by reinforced fiber with high-velocity impact fracture behavior of fiber reinforced concrete. As a result, for fracture behavior by high-velocity impact, it is considered that impact fracture behavior is not affected by static mechanical properties directly but affected by fiber type and density of the number of fiber. It is necessary to consider type, shape, mechanical properties and the number of fiber with flexural and tensile performance for the evaluation on impact resistance performance of fiber reinforced concrete.

  • PDF

고속발사 충격을 받는 보강사각판의 연구 (A Study on the Stiffened Rectangular Plate under High Velocity Impact)

  • 우대현;이영신
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.350-357
    • /
    • 2012
  • The velocity response of stiffened rectangular plate under high velocity impact was studied. Numerical simulation was conducted on the stiffened plate with four stiffeners under various impact positions. Considered stiffener types were rib, I, hat and T stiffener. For the center impact position of I stiffened plate, the simulated residual velocity was 365.6 m/s with the initial projectile velocity 500 m/s. The reinforcing characteristic of I stiffened plate was excellent among four stiffeners.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰 (The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact)

  • 조현준;김인걸;이석제;우경식;김종헌
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.175-181
    • /
    • 2013
  • 고속충격을 받는 복합재 적층판의 충격거동 특성 중에서 관통 후 잔류속도, 시편에 의한 충격흡수에너지 그리고 충격손상영역에 대한 평가와 예측이 중요하다. 본 논문에서는 고속충격을 받는 Carbon/Epoxy 복합재 적층판의 잔류속도와 흡수에너지를 준실험적 방법을 통하여 예측할 수 있는 방법을 제안하였다. 고속충격에 의한 시편의 흡수에너지를 정적에너지와 동적에너지로 구분하였으며 정적에너지는 보강섬유의 파손과 정적 탄성에너지와 관련 있는 준정적압입실험을 통한 관통에너지를 사용하였다. 동적에너지는 고속충격 시 시편 일부의 움직임과 관련한 운동에너지에 대하여 몇 가지 모델을 제안하여 비교하였다. 공압을 이용한 고속충격실험을 수행하고 예측 값과 비교 분석하였다. 시편의 손상영역은 C-scan을 통하여 측정하였다. 관통한계속도보다 큰 초기 속도인 경우, 정적에너지인 관통에너지 뿐 만 아니라 시편의 동적 에너지가 시편 전체 흡수에너지에 크게 기여함을 알 수 있었다.

후방 충돌 펄스와 NCAP 펄스 차이로 인한 목상해 특성 비교 (Compare Characteristics of Neck Injuries between Rear Impact Pulse and NCAP Pulse)

  • 김종곤;박종호
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.7-12
    • /
    • 2017
  • The whiplash is the most important issue of low speed rear-impact. So auto makers are committed to developing a seat to improve whiplash injury. Most NCAP tests have been used by same pulse (Mid Velocity 16kph). Only Euro NCAP uses different pulse that consists of Low, Mid, High velocity. But Euro NCAP also uses same pulse in Mid velocity as other NCAP test. That Mid velocity NCAP pulse was made by rear impact that has 90's vehicle structure properties. That pulse was used until now days. However these days, auto maker use more high tensile steel than 90's as customer and society demand more fuel efficiency and light vehicle with good safety structure. So modern vehicles have different pulse patterns of rear impact than NCAP pulse and 90's vehicle crash properties. In this paper, the test was conducted by following condition. Target car was impacted by the rigid barrier with certain velocity. Finally target vehicle gained delta V 16kph which was same velocity as NCAP Mid Velocity pulse. It is critical velocity which occur long period neck injury. It is very different pulse that was gained by real car impact from NCAP pulse. And it has higher peak G with high fluctuation and short duration than NCAP pulse.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.