• Title/Summary/Keyword: horizontally curved beam

Search Result 27, Processing Time 0.025 seconds

Free Vibrations of Horizontally Curved Beams with Transient Curve (완화곡선을 갖는 수평 곡선보의 자유진동)

  • 이병구;진태기;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.82-88
    • /
    • 2002
  • This paper deals with the free vibrations of horizontally curved beams with transition curve. Based on the dynamic equilibrium equations of a curved beam element subjected to the stress resultants and inertia forces, the governing differential equations are derived for the out-of-plane vibration of curved beam wish variable curvature. This equations are applied to the beam having transition curve in which the third parabolic curve is chosen in this study. The differential equations are solved by the numerical procedures for calculating the natural frequencies. As the numerical results, the various parametric studies effecting on natural frequencies are investigated and its results are presented in tables and figures. Also the laboratory scaled experiments were conducted for verifying the theories developed herein.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Free Vibrations of Stepped Horizontally Curved Beams with Variable Curvature (불연속 변화단면 변화곡률 수평 곡선보의 자유진동)

  • 이태은;안대순;이병구;김권식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.858-863
    • /
    • 2003
  • In the practical engineering fields, the horizontally curved beams are frequently erected as the major/minor structural components. The effects of both variable curvature and variable cross-section on structural behavior are very important and therefore these effects should be included in structural analyses. From this viewpoint, this paper deals with the free vibrations of horizontally curved beams with variable curvature and variable cross-section. In this study, the parabola as the curvilinear shape and stepped beam as the variable cross-section are considered. The ordinary differential equation governing free vibrations of such beams are derived. For calculating the natural frequencies, the governing equations are solved by numerical methods. The Runge-Kutta and Determinant search Methods are used for integrating the differential equations and for calculating the natural frequencies, respectively. With regard to numerical results, the relationships between frequency parameters and various beam parameters are presented in the forms of Table and Figures.

  • PDF

Free Vibration Analysis of Horizontally Curved Multi-Girder Bridges (수평곡선 격자형교의 자유진동해석)

  • 윤기용;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.55-61
    • /
    • 1996
  • In the present study, a numerical formulation procedure fer free vibration analysis of thin-walled horizontally curved multi-girder bridges is presented. The presented finite element procedure consists of curved and straight beam elements including warping degree of freedom. The homogeneous solutions of curved beam equations were used for shape functions in numerical formulation to achieve good convergence. In the straight beam element, the third order hermite polynomials were used fer shape functions. The Gupta method was used to solve the eigenvalue problem efficiently. The developed numerical procedure was applied to investigate the characteristics of free vibration of horizontally curved multi-girder bridges with varing subtended angle.

  • PDF

Behavior of Horizontally Curved I-Girder Bridges under Seismic Loading (지진하중하에서의 수평곡선I형교의 거동특성)

  • Yoon, Ki Yong;Sung, Ik Hyun;Choi, Jin Yu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.793-802
    • /
    • 2002
  • This study presented a finite element formulation for the dynamic analysis of horizontally curved I-girder bridges. The stiffness and mass matrices of the curved and the straight beam elements are formulated. Each node of both elements has seven degrees of freedom, including the warping degree of freedom. The curved beam element is derived from Kang and Yoo's theory of thin-walled curved beams. The computer program EQCVB has been developed to perform dynamic analyses of various horizontally curved I-girder bridges. The Gupta method is used to solve the eigenvalue problem efficiently, while the Wilson-${\theta}$ method is used for the seismic analysis. The efficiency of EQCVB is demonstrated by comparing solution time with ABAQUS. Using EQCVB, the study is applied to investigate the dynamic behavior of horizontally curved I-girder bridges under seismic loading.

A spatial displacement model for horizontally curved beams

  • Jiang, Z.G.;Luo, Q.Z.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.151-157
    • /
    • 2003
  • A new approach to the analysis of horizontally curved beams is presented in this paper. The proposed method simplifies a two-dimensional structure into a one-dimensional structure just like a normal beam for structural analysis and, therefore, reduces the computational effort significantly.

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

Semi-analytical solution of horizontally composite curved I-beam with partial slip

  • Qin, Xu-xi;Liu, Han-bing;Wu, Chun-li;Gu, Zheng-wei
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • This paper presents a semi-analytical solution of simply supported horizontally composite curved I-beam by trigonometric series. The flexibility of the interlayer connectors between layers both in the tangential direction and in the radial direction is taken into account in the proposed formulation. The governing differential equations and the boundary conditions are established by applying the variational approach, which are solved by applying the Fourier series expansion method. The accuracy and efficiency of the proposed formulation are validated by comparing its results with both experimental results reported in the literature and FEM results.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Free Vibrations of Horizontally Curved Beams with General Boundary Condition (일반경계 조건을 갖는 수평 곡선보의 자유진동)

  • Lee, Tae-Eun;Ahn, Dae-Soon;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.870-875
    • /
    • 2003
  • This paper deals with the free vibrations of horizontally curved beams with the general boundary condition, which consists of translational and rotational springs. The equations of general boundary condition of such beams are derived, while the ordinary differential equations governing free vibrations are adopted from the literature. The parabola as the curved beam's curvilinear shape is considered in numerical examples. For calculating the natural frequencies, the governing equations are solved by numerical methods. The Runge-Kutta and Determinant Search Methods are used for integrating the differential equations and for calculating the natural frequencies, respectively. for validation purpose, the numerical results obtained herein are compared to those obtained from the SAP 2000. With regard to numerical results, the relationships between frequency parameters and various beam parameters are presented in the forms of Table and figures.

  • PDF