• Title/Summary/Keyword: hot pepper leaf

Search Result 54, Processing Time 0.037 seconds

Hot Pepper Functional Genomics: Monitoring of Global Gene Expression Profiles During Non-Host Resistance Reactions in Hot Pepper Plant ( Capsicum annuum).

  • Lee, Sanghyeob;Chung, Eun-Joo;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.80.2-81
    • /
    • 2003
  • Since hot peppers (Capsicum annuum L.) are getting reputation as an important source of vitamins, medicine and many other areas, consumption and cultivation is being increased in the world. In spite of this usefulness, so little attention has been given to the hot pepper plants. To date, less than 500 nucleotide sequences including redundancy has been identified in NCBI database. Therefore we started to EST sequencing project for initial characterization of the genome, because of the large genome size of hot pepper (2.7 3.3 ${\times}$ 109 bp), To date, a set of 10,000 non-redundant genes were identified by EST sequencing for microarray-based gene expression studies. At present, cDNA microarrays containing 4,685 unigene clones are used for hybridization labeled targets derived from pathogen infected and uninoculated leaf tissues. Monitoring of gene expression profiles of hot pepper interactions with soybean pustule pathogen (Xag;Xanthomonas axonopodis pv. glycine) will be presented.

  • PDF

Detection of Virus in Fruit and Seed of Vegetables Using RT-PCR (RT-PCR에 의한 과채류 열매 및 종자의 바이러스 검정)

  • 최장경;김혜자;윤주연;박선정;김두욱;이상용
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 1998
  • Tobacco mosaic tobamovirus (TMV), cucumber mosaic cucumovirus (CMV), cucumber green mottle mosaic tobamovirus (CGMMV) and zucchini yellow mosaic potyvirus (ZYMV) from individual fruits and seeds of hot pepper and cucumber were detected by the reverse transcription-polymerase chain reaction (RT-PCR). The dilution end-points for RT-PCR in curde sap from TMV. and CMV - infected hot pepper leaves and CMV - and CGMMV-infected cucumber leaves were 10-5. However, the amount of PCR product obtained from preparation of ZYMV-infected cucumber leaf was 10-fold lower than those of CMV or CGMMV-infected cucumber leaves. In hot pepper, both TMV and CMV were detected in all parts of the fruit wall tissue, but the yields of PCR products in the fruit stalk and its surrounding tissues were higher than those of the end parts of the fruit. On the other hand, in cucumber fruit infected with CMV, CGMMV or ZYMV, the fruit wall tissue and seed located in both stalk and end parts showed higher yields of PCR products than those of intermediate parts. Of five viruses that were analysed, only TMV in hot pepper seed, and CGMMV and CMV in cucumber seed were detected in testa parts.

  • PDF

Processing Factors and Removal Ratios of Select Pesticides in Hot Pepper Leaves by a Successive Process of Washing, Blanching, and Drying

  • Lee, Mi-Gyung;Jung, Da-I
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1076-1082
    • /
    • 2009
  • Six pesticides were determined in hot pepper leaves after successive processing steps of washing, blanching, and drying. The tested pesticides included dichlofluanid, flusilazole, folpet, iprodione, ${\lambda}$-cyhalothrin, and lufenuron. Each pesticide was singly applied to the leaves of the pepper plants, which were being cultivated in a greenhouse. The processing factors were dependent on the type of pesticide, and were in the following ranges: 0.09-0.73 by washing, <0.00-0.48 after blanching, and <0.00-3.30 after drying. Only lufenuron showed a processing factor of more than 1, at 3.30 in dried leaves, while the processing factors of the other pesticides were less than 1. The removal ratios of the tested pesticides by washing ranged from 27 to 90%. The blanching step increased their removals by 10-25%. However, drying did not have an effect on residue reduction. Finally, after proceeding to the drying step, removal ratios ranged from 85 to 100%, with the exception of lufenuron at 47%.

Plant Growth Monitoring Using Thermography -Analysis of nutrient stress- (열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

Development of Prediction Growth and Yield Models by Growing Degree Days in Hot Pepper (생육도일온도에 따른 고추의 생육 및 수량 예측 모델 개발)

  • Kim, Sung Kyeom;Lee, Jin Hyoung;Lee, Hee Ju;Lee, Sang Gyu;Mun, Boheum;An, Sewoong;Lee, Hee Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.424-430
    • /
    • 2018
  • This study was carried out to estimate growth characteristics of hot pepper and to develop predicted models for the production yield based on the growth parameters and climatic elements. Sigmoid regressions for the prediction of growth parameters in terms of fresh and dry weight, plant height, and leaf area were designed with growing degree days (GDD). The biomass and leaf expansion of hot pepper plants were rapidly increased when 1,000 and 941 GDD. The relative growth rate (RGR) of hot pepper based on dry weight was formulated by Gaussian's equation RGR $(dry\;weight)=0.0562+0.0004{\times}DAT-0.00000557{\times}DAT^2$ and the yields of fresh and dry hot pepper at the 112 days after transplanting were estimated 1,387 and 291 kg/10a, respectively. Results indicated that the growth and yield of hot pepper were predicted by potential growth model under plastic tunnel cultivation. Thus, those models need to calibration and validation to estimate the efficacy of prediction yield in hot pepper using supplement a predicting model, which was based on the parameters and climatic elements.

Rainfastness of Two Fungicides Tank-mixed with Spreader-sticker (전착제를 혼용한 2 종 살균제의 내우성)

  • Choi, Yun-Kyong;Yu, Ju-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.203-208
    • /
    • 2009
  • In order to elucidate the effect of spreader-stickers on the rainfastness of dithianon and chlorothalonil wettable powders, and to estimate the possibility of suggesting good new formulations, the fungicide residues on the leaf surface of hot pepper was assessed and compared after the drop-wise applications of fungicide suspensions containing spreader-sticker on leaf surface followed by artificial raining. Three commercial spreader-stickers, which were Cover, Reitron and Silwet, not only made the rainfastness of dithianon wettable powders worse on hot pepper leaf, but increasing their concentrations also accelerated it further. On the other hand, to chlorothalonil wettable powder, Reitron showed the 3-fold improvement of rainfastness. But, for the rest, there was no improvement as well. The effect of N-octylpyrrolidone (NOP) on rainfastness of both fungicides was excellent. Soybean oil formulations containing leaf-penetrable nonionic surfactant, which was either polyoxyethylene monotridecyl ether or polyoxyethylene monolauryl ether, improved dithianon rainfastness, but the ones containing conventional emulsifiers did not.

Effect of Photoperiod Shortening on the Nutrient Uptake and Carbon Metabolism of Tomato and Hot Pepper Seedlings Grown Hydroponically (광주기 단축이 토마토와 고추 묘의 생장 및 무기양분흡수와 탄소대사에 미치는 영향)

  • Chi, Sung-Han
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • Tomato (Lycopersicon esculentum M. cv. ‘Momotarou’) and hot pepper seedlings (Capsicum annuum L. cv. 'Nockkwang')were grown under the 24h photopeliod (12 hrs light period: 12 hrs dark period) and 6 h photoperiod (3 hrs light period: 3hrs dark period). As a result of this experiment, the following details were observed. Plant height, leaf area, total dry weight, and leaf chlorophyll content decreased in case of tomato seedlings when they were given 6 h photoperiod. But the same effect was not observed in case of hot pepper seedlings. The photoperiod, however, did not produce any significant effect on the uptake of N, P, K, Mg and Ca ions in their nutrient solutions with the exception of their Fe. On thc 10th day of treatment, leaf chlorosis started to become visible in tomato seedlings and at the same time the uptake of Fe went down when the 6h photoperiod was applied to both tomato and hot pepper scedlings. In addition to this phenomenon, the sucrose content in leaf increased in case of tomato plants which were treated with 6 h photoperiod; on the other hand, their glucose content was observed to have decreased.

Residue Distribution of Chlorothalonil, Kresoxim-methyl and Procymidone among Different Parts of Hot Pepper Plants (고추 부위별 chlorothalonil, kresoxim-methyl 및 procymidone 농약성분의 잔류 분포)

  • Lee, Mi-Gyung;Hwang, Jae-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.722-726
    • /
    • 2009
  • The residue distribution ratio of pesticides among the flesh, stem and leaves of hot peppers were investigated to assure the safety of pepper powder and pepper leaves. Mixed solutions of chlorothalonil (wettable powder), kresoximmethyl (water dispersible granules) and procymidone (wettable powder) were applied once onto pepper plants in a plastic film house. After 7 days, the fruits and leaves were harvested and the fruits were divided into the flesh and stems. Pesticide residues in each pepper part were then analyzed by gas chromatography. The results showed that the concentration ratios of the chemicals in the flesh:stem and flesh:leaf ranged from 1:2-5 and 1:11-39, respectively, depending on the chemical evaluated. The observed flesh:stem ratio indicates that the pesticide content of the pepper powder product can increase by 20% if pepper stems are included in the powder product. The Korea Food and Drug Administration does not set a pesticide maximum residue level (MRL) for pepper leaves if a residue ratio in leaves over flesh is more than ten times. Results from this study support non-MRL status on the pepper leaves for the studied pesticides. Additionally, we recommend that the chlorothalonil product of a wettable powder type include the phrase "prohibition of distribution or sale for pepper leaves as food" because chlorothalonil highly resided in pepper leaves as more than twenty-four times that is a criterion level to determine an inclusion of the phrase in the label of pesticide product.

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Studies on Phytotoxin in Intensively Cultivated Upland Crops -I. Identification of phytotoxin in soil and effects of phytotoxin application to the toxicity of hot-pepper plant (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第)1보(報) 토양중(土壤中) 식물독소(植物毒素)의 분리정량(分離定量) 및 식물독소(植物毒素) 첨가(添加)가 고추 유식물(幼植物)에 미치는 영향(影響))

  • Lee, Sang Kyu;Suh, Jang Sun;Kim, Young Sig;Park, Jun Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 1987
  • A laboratory experiment was conducted to find out the concentration of phytotoxin in intensively cultivated hot-pepper, garlic and chinese cabbage, and effects of these phytotoxin to the germination and growth of young hot-pepper plant. Also this experiment presents describes of the bio-assay method and results of phytotoxin application to the toxicity of hot-pepper plant. The results obtained were summarized as follows; 1. A series of non-volatile (aromatic) phenolic compounds such as hydroquinone, benzoic-, p-hydroxybenzoic, and vanillic acid were quantitatively and qualitatively analysed using BSA(N, O-bis(trimethylsilyl)acetamide) by means of gas chromatography method. 2. Phytotoxin as hydroquinone, benzoic-, p-hydroxybenzoic- and vanillic acid were determined in intensively cultivated hot- pepper, garlic and chinese cabbage. Highest concentration of phytotoxin was obtained in hot-pepper cultivated soil. 3. Direct toxic action of the applied phytotoxin to the germination and young hot-pepper plant growth was observed at the levels of 200 ppm. Benzoic acid was obtained the highest toxicity to the young hot-pepper plant growth. 4. Mode of actions of phytotoxins to the young hot-pepper plant growth were observed as stunting of stem elongation, discoloration of leaf and oxygen depletion from consideration as causes of symptom.

  • PDF