• Title/Summary/Keyword: hybrid PWM

Search Result 119, Processing Time 0.025 seconds

Performance Improvement of BLDC Motor Speed Control Using Hybrid PWM Method (하이브리드 PWM 방식을 이용한 브러시리스 직류 전동기의 속도 제어 성능 향상)

  • 이동훈;오태석;전성구;김일환;남부희
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.491-500
    • /
    • 2004
  • This paper considers a hybrid PWM(pulse width modulation) method which can be used in the brushless DC motor controller. Due to many disadvantages of bipolar PWM method, unipolar PWM method is mostly used in industrial field. In constant speed control application, the unipolar PWM method shows the good performance of speed control. But in the wide range of speed control application, it shows poor performance especially when deceleration is needed. So we propose the hybrid PWM method that utilizes both of bipolar and unipolar PWM methods according to the sign of the speed controller output. Simulation and experimental result show that the proposed method improves speed control performance of the brushless DC motor which is applied to the industrial sewing machines.

A Gear Changing Technique of an Inverter for Variable Speed Drive Using Hybrid PWM (하이브리드 PWM에 의한 인버터 가변속 운전시의 패턴절환기법)

  • 서영민;박영진;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.64-67
    • /
    • 1998
  • This paper proposes the hybrid PWM scheme that can obtain less harmonic characteristics in GTO inverters. By employing the variable of the dc-link voltage Vdc, the hybrid PWM pattern can ideally compensate the dc input fluctuation together with selected harmonics elimination. The transient behavior, which the magnetic flux and torque are altered and the large current flows instantly, may be produced when the mode change. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF

Performance Improvement of BLDC Motor Speed Control Using Hybrid PWM Method (하이브리드 PWM 방식을 이용한 브러시리스 직류 전동기의 속도 제어 성능 향상)

  • Lee, Dong-Hoon;Kim, Il-Hwan;Nam, Bu-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.19-21
    • /
    • 2004
  • This paper considers pulse width modulation (PWM) methods which are used in 3-phase brushless DC motor controller. Due to many disadvantages of bipolar PWM method, unipolar PWM method is mostly used in industrial field. In constant speed control application, the unipolar PWM method shows a good performance of speed control. But in the wide range of speed control application, it shows a poor performance especially when deceleration is needed. So we propose hybrid PWM method that utilizes two PWM methods according to the sign of speed controller output. The simulation and experimental result shows that the proposed method improves a speed control performance of the brushless DC motor which is applied to industrial sewing machines.

  • PDF

A design of hybrid PWM inverter using microprocessor (마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

Modeling of Static Var Compensator with Hybrid Cascade 5-level PWM Inverter Using Circuit DQ Transformation (회로 DQ 변환을 이용한 하이브리드 Cascade 5-레벨 PWM 인버터를 포함하는 무효전력보상기의 모델링)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • Hybrid cascade multilevel PWM inverter has advantages of hybrid structure which enhances the better utilization of power semiconductor switches, that is, both hi호 power-low frequency switch, GTO and low power-high frequency switch, IGBT can be used in the same circuit. In this paper, a static var compensator using hybrid cascade 5-level PWM inverter is presented for high voltage/high power applications. The proposed system is modelled by circuit DQ transformation, and thus an equivalent circuit is obtained which reveals the important characteristics of the system and lead to the related equations. Finally, circuit structure and characteristics is presented and the validity of the characteristics analysis is shown through PSIM simulation.

Study on Hybrid PWM Method under Low Switching Frequency

  • Kekang, Wei;Zheng, Trillion Q.;Wang, Ran;Wang, Chenchen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This paper presents a hybrid pulse width modulation (PWM) method under low switching frequency conditions based on space vector PWM (SVPWM) and selective harmonic eliminated PWM (SHEPWM), which use asynchronous carrier modulation SVPWM at low frequency, and SHEPWM at high frequency, a square wave after rated conditions. A transitive strategy is proposed to realize a smooth transition of individual modes including SVPWM, SHEPWM and square waves. Experimental results confirm this hybrid modulation method and their transition are reasonable and proper.

A Study on the Design and the Analysis of Hybrid Inverter (하이브리드 인버터 설계 및 특성해석에 관한 연구)

  • 오진석;김윤식;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.99-106
    • /
    • 1995
  • PWM(Pluse Width Modulation) induction motor drives are being used in greater numvers through a wide variety of industrial and commercial applications. In this paper, a new speed control algorithm (hybrid algorithm) for induction motor drives that uses regular sampled PWM and harmonic elimination PWM is presented. The hybrid algorithm in implemeted on the computer to obtain solutions from the calculation equations of the width of the pulses and the firing angles for the selected harmonic elimination. this paper describes the time delay effects and the suitable compensating methods moreover, optical transmission system for driving signals is proposed and is compared with general trnasmission system. The hybrid inverter was tested with induction motor, and these test results are shown that this hybrid inverter closely approximates and exhibits many of the desirable performance characteristic distortions and eliminated the objectionable harmonics. Finally, detailed experimental investigation of the proposed hybrid scheme in presented.

  • PDF

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.

Analysis of Control Characteristics of High Power Hybrid Multilevel PWM Rectifier (대용량 하이브리드 멀티레벨 PWM 정류기의 제어특성 해석)

  • 최남섭
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.262-265
    • /
    • 2000
  • This paper presents analysis of control characteristics of high power hybrid multilevel PWM rectifier without bulky and heavy isolation transformers. It will be shown that the DC voltages for multilevel output generation may be directly built up from AC utility source. The multilevel PWM rectifier is analyzed by using the circuit DQ transformation whereby the static and dynamic characteristics and some useful design equations are obtained. Finally to confirm the validity of the analysis MATLAB simulation are carried out.

  • PDF

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.