• Title/Summary/Keyword: hydrocarbon dew point

Search Result 4, Processing Time 0.02 seconds

Calculation of the Hydrocarbon and Water Dew points of Natural Gas (천연가스의 탄화수소 및 물 이슬점 계산)

  • Ha, Youngcheol;Lee, Seongmin;Her, Jaeyoung;Lee, Kangjin;Lee, Seunjun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.565-571
    • /
    • 2009
  • This study was conducted to evaluate hydrocarbon and water dew points of natural gas. For this purpose, algorithm of suppressing divergence was devised to evaluate hydrocarbon dew point up to near critical point and algorithm for finding water dew points lower than that of hydrocarbon, which cannot be calculated by commercial dew point program, was developed. The evaluated values were compared to commercial program and ISO reference values, and the results showed that deviations were zero.

A Study on the Comparison of Methods for the Measurement of Hydrocarbon Dew Point of Natural Gas (천연가스의 탄화수소 이슬점 측정방법 비교 연구)

  • Lee, Kang-Jin;Ha, Young-Cheol;Her, Jae-Young;Woo, Jin-Chun;Kim, Yong-Doo;Bae, Hyun-Kil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.496-502
    • /
    • 2015
  • Hydrocarbon dew point(HCDP), a property which is the most generally used for describing natural gas condensation, is a very important parameter of natural gas quality specifications. HCDP is strongly influenced by the concentration of the heavier hydrocarbon components, especially $C_6+$, so, along with compliance with gas quality specifications, build up of procedures for obtaining accurate HCDP is essential for gas transmission company, because hydrocarbon condensation present may cause serious operational and safety problems. This study has been carried out in an attempt to measure HCDP accurately by the automatic hydrocarbon dew point meter under the actual field conditions. Measured HCDP also has been compared with calculated HCDP using the composition determined by gas chromatograph and industry accepted equation of state at multiple pressures, along with the cricondentherm. The test results are 1) the automatic hydrocarbon dew point meter was able to measure stable HCDP continuously 2) the automatic hydrocarbon dew point meter has been performed reference measurement by pure propane with a known dew point from literature, and 3) A meaningful differences was observed when comparing the automatic hydrocarbon dew point meter and gas chromatograph results for synthetic standard gas mixtures and real gas mixtures.

A Study on the Hydrocarbon Dew Point Prediction by the Compositions of the Fuel Gas Mixtures (연료용 혼합가스 조성에 따른 탄화수소 이슬점 예측)

  • Kim, Young-Gu;Choi, Seul-Gi;Ahn, Jung-Jin;Lee, Chang-Eon
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2015
  • The equations of hydrocarbon dew points(DT) of the fuel gas mixtures have been derived using the multiple regression analysis. In QSDR(Quantitative Structure Dew-point Relationship), the principal descriptors are CN(average carbon number) and BI(the ratio of the branched isomers). QSDRs studied by changing the pressures of the fuel gas mixtures in the range of 100 kPa ~ 500 kPa are as follows; $$DT(^{\circ}C)=-683.1+1224.98CN-898.01CN^2+308.58CN^3-49.56CN^4+3.02CN^5-12.42BI$$ (at 100 kPa, $$R_{adj}{^2}=0.99$$) (1) $$DT(^{\circ}C)=-745.2+1351.66CN-978.1CN^2+332.7CN^3-52.96CN^4+3.20CN^5-12.84BI$$ (at 200 kPa, $$R_{adj}{^2}=0.99$$) (2) $$DT(^{\circ}C)=-795.4+1457.1CN-1051.1CN^2+357.53CN^3-57.07CN^4+3.46CN^5-13.10BI$$ (at 300 kPa, $$R_{adj}{^2}=0.99$$) (3) $$DT(^{\circ}C)=-868.1+1608.4CN-1156.0CN^2+393.38CN^3-63.06CN^4+3.85CN^5-13.39BI$$ (at 500 kPa, $$R_{adj}{^2}=0.99$$) (4) As the average carbon numbers in the mixed fuel being reduced or the ratio of the branched isomers having a boiling point lower increase, The hydrocarbon dew point becomes lower, The differences between the hydrocarbon-dew points determined by the multiple regression and those calculated by the commercial program, VMGSim are negligible.

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.