• Title/Summary/Keyword: hydroforming

Search Result 197, Processing Time 0.025 seconds

Trends and Automotive Applications of Hydroforming (하이드로포밍 부품 적용 및 기술 개발 현황)

  • 서만석;김덕환
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2002
  • Recently, design concepts of vehicle will have to consider the safty and economy of fuel consumtion. The hydroforming technology has applied to increase strength, and to decrease weight, cost and part count. The hydroforming has been recognized as general technique in automotive industry. This paper deals with the trends of automotive application of hydroforming, new hydroforming technologies, facilities.

A Study on the Weld Line Position Optimization for Hydroforming (Hydroforming을 위한 Weld line 최적배치에 관한연구)

  • 전병희
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • Hydroforming is a metal forming process that enables circular metal tubes to be formed in to the parts with the complex cross section along the curved axial direction. Recently this hydroforming process is largely used for the production of the automotive parts. This paper presents the results of tube bending and hydroforming simulations in cases of the varying weld line positions of the tube. Ten cases of prebending and hydroforming simulations are carried out to find the optiaml weld line position.

  • PDF

Analysis of Hydroforming Process for an Automobile Lower Arm by FEM (유한요소법을 이용한 자동차 로어암의 액압성형 해석)

  • Kim, J.;Chang, Y.C.;Kang, S.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.534-542
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes, has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program HydroFORM-3D, the hydroforming process for an automobile lower arm is analyzed and designed. The manufacturing process for a lower arm consists of tube bending, preforming, and final hydroforming. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as internal hydraulic pressure, axial feeding, and tool geometry is required. This paper describes the influences of forming conditions on the hydroforming of a lower arm by using simulation to predict strain and tube shape during bending, preforming, and final hydroforming processes.

  • PDF

Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket (자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

Shape Optimization of the Steering Support System Using HYDROFORMING (STEERING SYSTEM 지지계에 HYDROFORMING 적용시 형상 최적화 연구)

  • 서정범;김봉수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.571-576
    • /
    • 2001
  • Hydroforming, the new production technology, has been used to manufacture many parts of vehicle in the recent auto industry. When Hydroforming is applied, it is possible to make parts simplification and flexible alteration of section shape in many advantages such as weight reduction, number of parts reduction or performance improvement. This research into shape optimization which reduces number of parts and weight maintaining performance was achieved. In this paper, the COWL CROSS BAA and MT'g BAKT parts of A car STEERING support SYSTEM was introduced by using Hydroforming.

  • PDF

Analysis and formability evaluation in tube and welded blank hydroforming of engine mount bracket (엔진마운트 브래킷의 튜브 및 용접판매 유압성형에 대한 성형해석과 성형성 비교)

  • 신용승
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.7-13
    • /
    • 1999
  • Hydroforming is the technology that utilizes hydraulic pressure to form sheet and tube metals in to desired shapes inside die cavities. It can be subdivided into tube hydroforming and sheet hydroforming according to the blanks used. In this paper the simulation of tube and welded blank hydroforming is carried out respectiyely. And simulation results are compared to evaluate formability in tube and welded blank hydroforming of engine mount bracket

  • PDF

A Study on the Hydroforming Technology of an Automotive Bumper Rail (자동차용 범퍼레일의 하이드로포밍 기술 연구)

  • 손성만;이문용;이상용
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.561-566
    • /
    • 2000
  • Recently, the hydroforming technology has been recognized as a general technique in manufacturing industry, especially in automotive industry. Hydroforming is applied to increase strength, and to decrease weight, cost and parts. Hydroforming is based on the inflation of, for Instance, a tube, coupled with axial or radial compression and by subsequent expansion and sizing against the die wall. Expansion, axial feeding, calibration are important parameters in this process. In this paper, the effects of various parameters such as internal pressure, axial feeding and friction on hydroforming of automotive bumper rail have been considered.

  • PDF

Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs (박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석)

  • Kim T. J.;Yang D. Y.;Han S. S.;Nam J. B.;Jin Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF

Forming Analysis on the Tubular Hydroforming of Side Member (Side Member 관재 하이드로포밍 성형해석)

  • Park J. H.;Choi Y. C.;Oh Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.54-58
    • /
    • 2001
  • In recent years, hydroforming technology has been one of the most important technology in automotive industry in the points of weight saving, cost reduction and qualify improvement. However, compared with traditional metal forming technology, hydroforming has much fewer information in experience and empirical knowledge. But we don't have my sufficient time and money to produce hydroforming products using real blank directly Therefore Simulation is essential in hydrofonrung technology development. In this paper, we simulate the side member as the tubular hydroforming technology. The manufacturing process of side member' consists of pre_bending, pre_forming, and hydroforming of a thin tube. Variables such as internal pressure, end feeding, and tool geometry are optimized to improve the forming safety. And we simulate side member according to several lubricant conditions. from those simulations, we find that strain distributions can be reduced well by internal pressure and end feeding control, and lubrication is the most important thing in hydroforming process.

  • PDF

Finite Element Analysis for the Hydroforming Process of Sheet Metal Pairs (박판쌍 하이드로포밍 공정의 유한요소해석)

  • Kim J.;Chang Y. C.;Ok C. S.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.40-43
    • /
    • 2001
  • The use ef sheet material for the hydroforming of a closed hollow body out of two sheet metal blanks is a new class of hydroforming process. By using a three-dimensional finite element program, called HydroFORM-3D, the hydroforming process of sheet metal pairs is analyzed. Also the comparison of conventional deep-drawing and hydroforming process was conducted. The simulation has concentrated on the influences of the various forming conditions, such as the unwelded or welded sheet metal pairs and friction condition, on the hydroforming process. This computational approach can prevent time-consuming trial-and-error in designing the expensive die sets and hydroforming process of sheet metal pairs.

  • PDF