• Title/Summary/Keyword: hydrogen peroxide

Search Result 2,176, Processing Time 0.031 seconds

Effects of Taeumin Chungsimyeunjatang on the Cerebral neurons injured by Hydrogen Peroxide (태음인(太陰人) 청심연자탕(淸心蓮子湯)이 Hydrogen Peroxide에 손상(損傷)된 백서(白鼠)의 대뇌신경세포(大腦神經細胞)에 미치는 영향(影響))

  • Ok, Yun-young;Ryu, Do-gon;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.251-266
    • /
    • 1999
  • 1. Purpose : The purpose of this study was to determine the effects of Chungsimyeunjatang on the cerebral neurons injured by hydrogen peroxide($H_2O_2$). 2. Methods : I observed cell viability in mouse cerebral neurons exposed to hydrogen peroxide by NR assay and MTT assay and determined lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. After administration of Chungsimyeunjatang water extracts, I observed significant changes of cell viability, lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. 3. Results : Hydrogen peroxide showed neurotoxicity. Cell viability in mouse cerebral neurons exposed to hydrogen peroxide decreased in NR assay and MTT assay. Lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide increased. Chungsimyeunjatang was very effective in blocking hydrogen peroxide-induced neurotoxicity.

  • PDF

Monitoring and Characterization of Bacterial Contamination in a High-Purity Water System Used for Semiconductor Manufacturing

  • Kim, In -Seop;Lee, Geon-Hyoung;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • Hydrogen peroxide has been used in cleaning the piping of an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16 megabyte DRAM semiconductor manufacturing. The level of hydrogen peroxide-resistant bacteria in UHPW water was monitored prior to and after disinfecting the piping with hydrogen peroxide. Most of the bacteria isolated after hydrogen peroxide disinfection were highly resistant to hydrogen peroxide. However, the percentage of resistant bacteria decreased with time. The hydrogen peroxide-resistant bacteria were identified as Micrococcus luteus, Bacillus cereus, Alcaligenes latus, Xanthomonas sp. and Flavobacterium indologenes. The susceptibility of the bacteria to hydrogen peroxide was tested as either planktonic cells or attached cells on glass. Attached bacteria as the biofilm on glass exhibited increased hydrogen peroxide resistnace, with the resistance increasing with respect to the age of the biofilm regrowth on piping after hydrogen peroxide treatment. In order to optimize the cleaning strategy for piping of the high-purity water system, the disinfecting effect of hydrogen preoxide and peracetic acid on the bacteria was evaluated. The combined use of hydrogen peroxide and peracetic acid was very effective in killing attached bacteria as well as planktonic bacteria.

  • PDF

Self-Decomposition Characteristic of Concentrated Hydrogen Peroxide with Temperature and Stabilizer (저장 온도와 안정제 양에 따른 고농도 과산화수소의 자연 분해 특성)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.16-21
    • /
    • 2009
  • This paper introduces the methods of hydrogen peroxide storage test and storability of concentrated hydrogen peroxide is estimated. Using the method of simple concentration measuring, storability was evaluated. Experiment variables were the amount of stabilizer in hydrogen peroxide, storage temperature, and caps of vessels. The experiments were performed during 8 months to 24 months. High purity hydrogen peroxide had much better storability than hydrogen peroxide with much stabilizer. In addition, the case using paraffin film which did not react with hydrogen peroxide for covering showed better storability. The temperature is very important variable in hydrogen peroxide storage. So, when hydrogen peroxide was under $10^{\circ}C$ storability of hydrogen peroxide is much improved.

Effect of Allopurinol on Vascular Endothelial Cells Damaged by Hydrogen Peroxide In Vitro (Hydrogen Proxide에 의해 손상된 배양 혈관내피세포에 대한 Allopurinol의 영향)

  • Suk, Seung-Han
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.980-984
    • /
    • 2006
  • In order to examine the effect of oxygen free radicals on the vascular endothelial cells, cell viability was measured by XTT assay after bovine pulmonary vascular endothelial cell line(BPVEC) was treated only with hydrogen peroxide. In addition, the antioxidant effect of allopurinol on cells treated with hydrogen peroxide was examined by colormetric assay. in this study, the BPVEC treated with hydrogen peroxide showed the significantly decreased cell viability compared with control. Whereas, the viability of cells treated with hydrogen peroxide and allopurinol has significantly increased when compared with that of cells treated only with hydrogen peroxide. These results suggested that hydrogen peroxide, one of the oxygen free radicals showed cytotoxic effect and allopurinol has protective effect on oxygen free radical-induced cytotoxicity.

Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles

  • Lee, Il-Jae;Hwang, On;Yoo, Dong-Hyuck;Khang, Gil-Son;Lee, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2187-2192
    • /
    • 2011
  • Hydrogen peroxide plays a key role as a second messenger in the normal cellular signaling but its overproduction has been implicated in various life-threatening diseases. Peroxalate chemiluminescence is the light emission from a three component reaction between peroxalate, hydrogen peroxide and fluorophores. It has proven great potential as a methodology to detect hydrogen peroxide in physiological environments because of its excellent sensitivity and specificity to hydrogen peroxide. We developed chemiluminescent micelles composed of amphiphilic polymers, peroxalate and fluorescent dyes to detect hydrogen peroxide at physiological concentrations. In this work, we studied the relationship between the chemiluminescence reactivity and stability of peroxalate by varying the substitutes on the aryl rings of peroxalate. Alkyl substitutes on the aryl ring of peroxalate increased the stability against water hydrolysis, but diminished the reactivity to hydrogen peroxide. Chemiluminescent micelles encapsulating diphenyl peroxalate showed significantly higher chemiluminescence intensity than the counterpart encapsulating dimethylphenyl or dipropylphenyl peroxalate. Diphenyl peroxalate-encapsulated micelles could detect hydrogen peroxide generated from macrophage cells stimulated by lipopolysaccharide (LPS) and image hydrogen peroxide generated during LPS-induced inflammatory responses in a mouse.

Effect of Scutellariae Radix Water Extract on Hydrogen Peroxide Production in RAW 264.7 Mouse Macrophages (황금(黃芩) 물추출물이 마우스 대식세포의 hydrogen peroxide 생성에 미치는 영향)

  • Park, Wan-Su
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Objectives : The purpose of this study is to investigate effects of Scutellariae Radix Water Extract on hydrogen peroxide production in RAW 264.7 mouse macrophages. Methods : Scutellariae Radix produced from South Korea (SK) and Scutellariae Radix produced from China (SC) were extracted by hot water. Effects of SK and SC on hydrogen peroxide production in RAW 264.7 were measured by dihydrorhodamine 123 assay after 2, 4, 20, 24, 28, 44, and 48 h incubation at the concentrations of 10, 25, 50, and 100 ug/mL. Results : SK significantly increase hydrogen peroxide production in RAW 264.7 cells for 2, 4, 20, 24, 28, 44, and 48 h incubation at the concentrations of 10, 25, 50, and 100 ug/mL (P < 0.05). SC also significantly increase hydrogen peroxide production in RAW 264.7 cells for 4, 20, 24, 28, and 48 h incubation at the concentrations of 10, 25, 50, and 100 ug/mL (P < 0.05). For 2 h incubation, SC significantly increase hydrogen peroxide production in RAW 264.7 cells at the concentrations of 10, 25, and 100 ug/mL (P < 0.05). For 44 h incubation, SC significantly increase hydrogen peroxide production in RAW 264.7 cells at the concentrations of 10, 25, and 50 ug/mL (P < 0.05). Conclusions : These results suggest that Scutellariae Radix has the immune - enhancing property related with its increasement of hydrogen peroxide production in macrophages.

Determination of Hydrogen Peroxide Concentration by Portable Near-Infrared (NIR) System (근적외분광분석법을 이용한 과산화수소의 농도 측정)

  • 임현량;우영아;장수현;김경미;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.324-330
    • /
    • 2002
  • This experiment was carried out to determine non-destructively the hydrogen peroxide concentration of 3% antiseptic hydrogen peroxide solutions by portable near-infrared (NIR) system. Hydrogen peroxide standards were prepared ranging from 0 to 25.6 w/w% and the NIR spectra of hydrogen peroxide standard solutions were collected by using a quartz cell in 1 mm pathlength. We found the variation of absorbance band due to OH vibration of hydrogen peroxide depending on the concentration around 1400 nm in the second derivatives spectra. Partial least square regression (PLSR) and multilinear regression (MLR) were explored to develop a calibration model over the spectral range 1100-1720 nm. The model using PLSR was better than that using MLR. The calibration showed good results with a standard error of prediction (SEP) of 0.16%. In order to validate the developed calibration model, routine analyses were performed using commercial antiseptic hydrogen peroxide solutions. The hydrogen peroxide values from the NIR calibration model were compared with the values from a redox titration method. The NIR routine analyses results showed good correlation with those of the redox titration method. This study showed that the rapid and non-destructive determination of hydrogen peroxide in the antiseptic solution was successfully performed by portable NIR system without very harmful solvents.

Scavenge of superoxide and hydrogen peroxide by bovine intact red blood cells (한우 무손상 적혈구의 superoxide 및 과산화수소 제거능력)

  • Cho, Jong-hoo;Park, Sang-youel
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.273-279
    • /
    • 1998
  • The ability of bovine intact red blood cells to scavenge superoxide and hydrogen peroxide by superoxide dismutase, catalase and glutathione peroxidase was investigated. Intact red cells(up to 0.4%) suspensions did not inhibit ferricytochrome c reduction by superoxide in the superoxide generating system. On the other hand, intact red cell(0.4%) suspensions almost completely inhibit ferrocytochrome c oxidation by hydrogen peroxide. The ability of intact red cells to scavenge hydrogen peroxide was mainly attributed to either membrane bound catalase or glutathione peroxidase. The scavenge of hydrogen peroxide by 0.1~0.2% intact red cells showed a trend of dependence on mainly glutathione peroxidase. However, at blood cell concentration higher than 0.3%, the process depended upon peroxidase-independent scavengers like catalase. Enhancement of ferrocytochrome c oxidation by red cells treated with aminotriazole proved that the protection against hydrogen peroxide was due to catalase, while the protection in the presence of glutathione indicated scavenging effect of glutathione peroxidase against hydrogen peroxide.

  • PDF

Feasibility of Energy Generation from Chemical Reaction between Hydrogen Peroxide/Hydride (고농도 과산화수소와 수소화물의 지속적인 반응에 대한 연구)

  • SEO, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.271-277
    • /
    • 2015
  • The present paper discusses about noble idea on various reactions including hydrides, hydrogen peroxide and nano-sized metal powders, which do not emit toxic materials as well as carbon dioxide. Here in this paper, the very first-ever concept that heat energy can be generated from the direct reaction between sodium borohydride and hydrogen peroxide is presented. Sodium hydride as fuel can supply hydrogen reacting with oxygen provided by the decomposition of hydrogen peroxide solution. Solid sodium borohydride can be resolved in water and treated as liquid solution for the easy handling and the practical usage although its solid powder can be directly mixed with hydrogen peroxide for the higher reactivity. The thermodynamic analysis was conducted to estimate adiabatic reaction temperatures from these materials. The preliminary experiment on the reactions conducted using sodium borohydride powder and hydrogen peroxide water solution revealed that the self-propagating reaction can occur and that its reactivity increases with an increase of hydrogen peroxide concentration.

Effects of baicalein on hydrogen peroxide productions in RAW 264.7 mouse macrophages stimulated by poly-IC and lipoteichoic acid (바이칼레인(baicalein)이 poly-IC와 lipoteichoic acid로 자극된 마우스 대식세포 RAW 264.7의 hydrogen peroxide 생성에 미치는 영향)

  • Wansu Park
    • The Korea Journal of Herbology
    • /
    • v.38 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : The aim of this study was to investigate the effect of baicalein (BA) on the production of hydrogen peroxide and nitric oxide (NO) in RAW 264.7 mouse macrophages stimulated with polyinosinic-polycytidylic acid (poly-IC) and lipoteichoic acid. Methods : RAW 264.7 co-stimulated with poly-IC and lipoteichoic acid were incubated with baicalein at concentrations of 25 and 50 μM. Incubation time is 16 h, 18 h, 20 h, 22 h, and 24 h. After incubation, The production of hydrogen peroxide in RAW 264.7 was measured with dihydrorhodamine 123 assay. Chrysin was used as a comparative material. NO production was evaluated by griess assay. Results : For 16 h, 18 h, 20 h, 22 h, and 24 h incubation, BA at the concentration of 25 and 50 μM significantly inhibited the production of hydrogen peroxide in RAW 264.7 stimulated by poly-IC and lipoteichoic acid (p <0.001). In details, production of hydrogen peroxide in 'poly-IC and lipoteichoic acid'-stimulated RAW 264.7 treated for 16 h with BA at concentrations of 25 and 50 μM was 82.36% and 77.24% of the control group treated with poly-IC and lipoteichoic acid only, respectively; the production of hydrogen peroxide for 18 h was 83.15% and 77.91%, respectively;production of hydrogen peroxide for 20 h was 82.88% and 77.82%, respectively; production of hydrogen peroxide for 22 h was 83.27% and 78.17%, respectively; production of hydrogen peroxide for 24 h was 83.54% and 78.35%, respectively. Additionally, BA at the concentration of 50 and 100 μM significantly inhibited NO production in lipoteichoic acid-induced RAW 264.7 (p <0.001). Conclusions : BA might have anti-oxidative activity related to its inhibition of hydrogen peroxide production in 'poly-IC and lipoteichoic acid'-stimulated RAW 264.7 macrophages.