• Title/Summary/Keyword: hydrogen peroxide

Search Result 2,177, Processing Time 0.028 seconds

Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust (l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

Ignition Studies Of Igniter using Hydrogen Peroxide And Kerosene (Catalyst Ignition) (과산화수소/케로신(촉매점화) 점화기의 점화특성에 관한 연구)

  • Kim, Ki-Woo;Kim, Tae-Wan;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.57-60
    • /
    • 2009
  • Exothermic and ignition characteristic of igniter is very important factor in engine performance. Since the igniter performance is effected by Hydrogen Peroxide decomposition rate, we have to test the preliminary catalyst performance test. In this report, after making igniter using hydrogen peroxide/kerosene, a thermal characteristic were examined by comparing hydrogen peroxide mass and catalyst mass. And then we study ignition characteristic of the affects of O/F ratio using the previous data.

  • PDF

Treatment of High Strength para-Nitrophenol using Fenton-like Oxidation Catalyzed by Steeler's Dust (제강분진을 촉매로 활용한 펜톤유사산화에 의한 고농도 para-Nitrophenol의 처리)

  • 배범한;정재훈;이성재;장윤영;박규홍;장윤석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.136-139
    • /
    • 2000
  • Fenton-like oxidation of para-nitrophenol(PNP) was studied using hydrogen peroxide iii combination with steeler's dust substituted for ferrous iron in Fenton's reaction. Various factors critical in the degradation of PNP were studied, including hydrogen peroxide dosage, concentration of steeler's dust. and initial pH. Experimental results showed that 1,000mg/L PNP and its oxidation intermediate could be mostly decomposed within 30m1n by 10g/L steeler's dust, 0.25% hydrogen peroxide, and initila pH of 3.0. The reaction rate constant (k) of CODcr concentration were calculated with the addition of steeler's dust(0.0059 min$^{-1}$ (g/L)$^{-1}$ ) and hydrogen peroxide(0.2965 min$^{-1}$ (%)$^{-1}$ ), respectively.

  • PDF

Biodegradation of Hydrogen Peroxide in Semiconductor Industrial Wastewater with Catalase from Micrococcus sp.

  • Oh, Sung-Hoon;Yu, Hee-Jong;Kim, Moo-Sung;So, Sung;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.33-36
    • /
    • 2002
  • A catalase from Micrococcus sp. isolated from soil was applied to degrade hydrogen Peroxide in wastewater from a semiconductor industry. The degradation rates of hydrogen peroxide increased with increasing reaction time and catalase concentrations in the reaction mixture. However, in the presence of aluminum chloride or chloride oxide used in detergent compounds, the degradation rate of hydrogen peroxide was not affected. Enzyme stabilizers and antifoam did not affect the degradation rates of hydrogen peroxide.

Low-temperature Dyeing of Silk Fabrics using a Glyoxal/Hydrogen peroxide Redox System (Glyoxal/Hydrogen peroxide-Redox System을 사용한 견직물의 저온염색)

  • 이내연;백두현;임종열;임영훈
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1994
  • A low-temperature dyeing system for silk fabrics based on a redox system has been investigated. Some factors affecting dyeing of silk fabrics with levelling acid dyes in the absence and presence of certain redox system were investigated under different conditions. The variables studied were; type and concentration of redox system, dyeing conditions, i. e. temperature and time, dye concentration, material-to-liquor ration(LR) and colour fastness. The colour strength(K/S value) is outstandingly higher in the presence than in the absence of redox system. A comparison between the colour strength values of such dyeings abtained the three redox system would call for the following order ; Glyoxal/hydrogen peroxide>thiourea/hydrogen peroxide>glucose/hydrgen peroxide> nothing. In the presence of redox system, free radicals are supposed to be formed in both the fiber and the dye and the interaction between these free radicals bring about covalent fixation beside the usual electrostatic bonds, hydrogen bonds and Van der Waals forces.

  • PDF

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Oxidation of Pyridazinyl Sulfides: Synthesis of New Pyridazinyl Sulfoxides and Pyridazinyl Sulfones with Aqueous Hydrogen Peroxide (Pyridazinyl Sulfides의 산화반응: 과산화수소를 이용한 새로운 Pyridazinyl Sulfoxides 및 Pyridazinyl Sulfones의 합성)

  • Park, Eun-Hee;Park, Myung-Sook
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.390-394
    • /
    • 2012
  • A series of new pyridazinyl sulfoxides 3a~e and pyridazinyl sulfones 4a were synthesized for development of candidates to retain anticancer activity. The utility of sulfoxides and sulfones in both laboratory and industrial practice was quickly recognized, and these species have been extensively utilized, including as pharmaceutical intermediates and anticancer agents. Alkylthiopyridazines 2a~e were prepared from the 3,6-dichloropyridazine using allylthiolation with alkyl mercaptan. Sulfides could be oxidized to sulfoxides or sulfones using 1~3 equivalents of hydrogen peroxide as an oxidant. The oxidation of sulfoxides to sulfones was also accomplished with aqueous hydrogen peroxide. Formation of 3a~e and 4a was undertaken with stirring using 35% hydrogen peroxide at room temperature in acetic acid for 18~72 h. Synthetic compounds were identified using NMR spectrum.

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

Synthesis of Platinum-Reduced Graphene Oxide (Pt-rGO) Nanocomposite for Selective Detection of Hydrogen Peroxide as a Peroxidase-Mimic Catalyst

  • Doyun Park;Min Young Cho;Kuan Soo Shin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.415-419
    • /
    • 2023
  • In this study, we report the one-pot synthesis of reduced graphene oxide (rGO) containing platinum nanoparticles with catalytic activity to break down hydrogen peroxide as a peroxidase-mimicking catalyst. A single reducing agent was used to reduce graphene oxide and a platinum precursor at a moderately low temperature of 70℃. The rGO was homogeneously decorated with platinum nanoparticles. The catalytic activity of Pt-rGO was investigated for the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB), a peroxidase substrate, in the presence of hydrogen peroxide. The Pt-rGO coupled with glucose oxidase was also able to detect glucose at millimolar concentrations (up to 1 mM). Our results show that the Pt-rGO composite is a promising catalyst for the detection of hydrogen peroxide. This method was also applied for the detection of glucose.

Identification and Characterization of Hydrogen Peroxide-generating Lactobacillus fermentum CS12-1

  • Kang, Dae-Kyung;Oh, H.K.;Ham, J.-S.;Kim, J.G.;Yoon, C.H.;Ahn, Y.T.;Kim, H.U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.90-95
    • /
    • 2005
  • Lactic acid bacteria were isolated from silage, which produce high level of hydrogen peroxide in cell culture supernatant. The 16S rDNA sequences of the isolate matched perfectly with that of Lactobacillus fermentum (99.9%), examined by a 16S rDNA gene sequence analysis and similarity search using the GenBank database, thus named L. fermentum CS12-1. L. fermentum CS12-1 showed resistance to low pH and bile acid. The production of hydrogen peroxide by L. fermentum CS12-1 was confirmed by catalase treatment and high-performance liquid chromatography. L. fermentum CS12-1 accumulated hydrogen peroxide in culture broth as cells grew, and the highest concentration of hydrogen peroxide reached 3.5 mM at the late stationary growth phase. The cell-free supernatant of L. fermentum CS12-1 both before and after neutralization inhibited the growth of enterotoxigenic Escherichia coli K88 that causes diarrhea in piglets.