• Title/Summary/Keyword: hydrogen system

Search Result 2,306, Processing Time 0.032 seconds

A Study on Implementation Plan of Clean Hydrogen Certification System (청정수소 인증제 시행방안 연구)

  • RHEE, HAN WOO;KIM, JIN HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • The Hydrogen Economy Promotion and Hydrogen Safety Management Act (hereinafter referred to as the "Hydrogen Economy Act") stipulates matters related to certification and cancellation of clean hydrogen by grade, and requires those who produce, import, or sell clean hydrogen to report to the Minister of Trade, Industry and Energy. In order for this system to operate smoothly, the clean hydrogen Certification system must be designed to meet international standards, and the institution operating the System must have appropriate capabilities and foundations. The clean hydrogen certification system should serve as an opportunity for Korea's domestic energy industry to take a leap forward.

A experimental study on the sensor response at hydrogen leakage in a residential fuel cell system (가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구)

  • Kim, Young-Doo;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2009-2014
    • /
    • 2007
  • Hydrogen is a fuel of fuel cell system, which has powerful explosion possibility. Hence, the fuel cell system needs safety evaluation to prevent risk of hydrogen leakage. We use a actual size chamber of a common fuel cell module to analyze hydrogen. Hydrogen injection holes are located in lower part of the chamber in order to simulated hydrogen leakage. The hydrogen sensor can detect range of 0${\sim}$4%. Since the hydrogen gas, of which leaked amount is controled by MFC, are injected at the bottom holes, the transient sensor signals are measured. At a condition of 10cc/s of hydrogen leakage, the sensor detects hydrogen leakage after 22sec and there is also several seconds of time delay depending on the position of the sensor. This experimental data can be applied for the design of the hydrogen detection system and ventilation system of a residential fuel cell system.

  • PDF

Risk Assessment for the Integrated System of Hydrogen Generation System Linked to Fuel Cell (연료전지 연계 수소추출기 통합 시스템에 대한 위험성 평가)

  • DANBEE SHIN;SEONGCHUL HONG;KWANGWON RHIE;DOOHYOUN SEO;DONGMIN LEE;TAEHUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.728-733
    • /
    • 2023
  • Efforts are continuing to change from fossil fuels used to hydrogen energy society. In order to become a hydrogen society, stable production and real-life applicability are important. As a result, hydrogen generation system linked to fuel cell are being developed. Through this, it is expected that production to power generation will be possible where desired by utilizing the existing urban gas piping network. Hydrogen generation system and hydrogen fuel cell have been subjected to risk assessment and have already been commercialized, but no risk assessment has been conducted on the integrated system linking them. Therefore, it is intended to secure its safety by conducting a risk analysis on the integrated system.

Modeling of Solar-Powered Hydrogen Production System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 수소제조용 태양광 발전 시스템의 모델링)

  • Lee Dong-Han;Park Minwon;Yu In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.116-121
    • /
    • 2006
  • This paper presents an effective modeling and simulation scheme of solar-powered hydrogen production system (PV-SPE: Photovoltaic Solid Polymer Electrolyte). Existing Hydrogen production technologies can produce vast amounts of hydrogen from hydrocarbons but emit large amounts of carbon dioxide (CO2) into the atmosphere. Advanced hydrogen production methods need development. Renewable technologies such as solar and wind need further development for hydrogen production to be more cost-competitive from other resources. In this paper, authors have focused on a renewable technology to move one step further toward commercial readiness of solar-powered hydrogen production system. Software (PSCAD/EMTDC) based model of PV-SPE system is studied for an effective simulation of hydrogen production system. Using the simulation results, an actual PV-SPE system is implemented to verify the simulation results by comparing them with actual values obtained from the data acquisition system.

A Construction Plan of Hydrogen Fueling Stations on Express Highways Using Geographic Information System (지리정보시스템을 이용한 고속국도에서의 수소충전소 구축 방안)

  • Gim, Bongjin;Kook, Ji Hoon;Cho, Sang Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2014
  • This paper deals with a construction plan of hydrogen fueling stations on express highways using geographic information system. We analyzed the existing hydrogen fueling stations and production facilities to construct the hydrogen supply system to satisfy the hydrogen demands. Also, we suggested the necessary number and locations of hydrogen fueling stations on express highways for operating fuel cell vehicles. As a result, we need to construct at least 6 hydrogen stations on express highways in 2020 and 14 hydrogen stations in 2025. In 2030, when fuel cell vehicles are expected to spread over the whole nation, 114 hydrogen stations are needed to construct on express highways. This study mainly utilized the information of distances between hydrogen production facilities and fueling stations. However, we need to analyze the other factors such as traffic and income data. Also, it is necessary to make a suitable construction plan of hydrogen fueling stations that should be constructed on each district using geographic information system.

Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production (국내 광전기화학 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant (원자력 이용 고체산화물 고온전기분해 수소 및 합성가스 생산시스템의 열역학적 효율 분석 연구)

  • Yoon, Duk-Joo;Koh, Jae-Hwa
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.416-423
    • /
    • 2009
  • High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.

Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation (태양광 발전 연계 수전해 시스템의 경제성 분석)

  • HWANG, SUNCHEOL;PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.