• Title/Summary/Keyword: hydrologic characteristics

Search Result 321, Processing Time 0.024 seconds

Analysis of Watershed Hydrologic Responses using Hydrologic Index (수문지수를 이용한 유역의 수문반응 분석)

  • Park, Yoonkyung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.785-794
    • /
    • 2014
  • Hydrologic responses in watershed are determined by complex interactions among climate, land use, soil and vegetation. In order to effectively investigate hydrologic response in watershed, one needs to analyze the characteristics of climate as well as other factors. In this study, the relative contribution of climate factors and watershed characteristics on hydrologic response is investigated by using hydrologic indexes such as the aridity index and the Horton index. From preliminary analysis, it is shown that the Horton index is proper in terms of classifying hydrologic responses in main natural watersheds of south Korea. While climate and watershed characteristics both contributes to hydrologic responses, the degree contributed from each factor is changed depending on annual climatic humid conditions. In dry conditions, the climate factor is the predominant influence on hydrologic responses. However, in wet conditions, the contribution of watershed characteristics on hydrologic responses is relatively increased.

Simulation of Groundwater Variation Characteristics of Hancheon Watershed in Jeju Island using Integrated Hydrologic Modeling (통합수문모형을 이용한 제주 한천유역의 지하수 변동 특성 모의)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.515-522
    • /
    • 2013
  • To investigate groundwater variation characteristics in the Hancheon watershed, Jeju Island, an integrated hydrologic component analysis was carried out. For this purpose, SWAT-MODFLOW which is an integrated surface-groundwater model was applied to the watershed for continuous watershed hydrologic analysis as well as groundwater modeling. First, ephemeral stream characteristics of Hancheon watershed can be clearly simulated which is unlikely to be shown by a general watershed hydrologic model. Second, the temporally varied groundwater recharge can be properly obtained from SWAT and then spatially distributed groundwater recharge can be made by MODFLOW. Finally, the groundwater level variation was simulated with distributed groundwater pumping data. Since accurate recharge as well as abstraction can be reflected into the groundwater modeling, more realistic hydrologic component analysis and groundwater modeling could be possible.

A Review on the Application of Stochastic Methods in the Analysis of Hydrologic Records (수문기록 분석을 위한 추계학적방법의 응용에 관한 고찰)

  • 윤용남
    • Water for future
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1971
  • Hydrologic data serve as an input to the water resources system. An adequate analysis of hydrologic data is one of the most important steps in the planning of the water resources development program. The natural hydrologic processes, which produce the hydrologic data, are truely 'stochastic' in the sense that natural hydrologic phenomena change with time in accordance with the law of probability as well as with sequential relationship between their occurrences. Therefore, the stochastic approach to the analysis of hydrologic data has become more popular in recent years than the conventional deterministic or probabilistic approach. This paper reviews the mathematical models which can adequately simulate the stochastic behavior of the hydrologic characteristics of a hydrologic system. The actual application of these models in the analysis of hydrologic records(precipipitation and runoff records in particular) is also presented.

  • PDF

Effect of Climate and Landscape Characteristics on Hydrologic Partitioning and Vegetation Response (기후와 지형 특성이 수문분할과 식생반응에 미치는 영향)

  • Park, Yoonkyung;Choi, Minha;Ahn, Jaehyun;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.735-744
    • /
    • 2013
  • The effect of climate and landscape characteristics on hydrologic partitioning and vegetation response is analyzed in this study. After quantifying hydrologic partitioning using the Horton index, the relation between regional climate characteristics and the Horton index is investigated. In addition, using the comparison between the predictability of the Horton index with only regional climate characteristics and the predictability of the Horton index with landscape characteristics as well as regional climate characteristics, the relative contribution of landscape characteristics on hydrologic partitioning is analyzed. Finally, investigating the predictability of the aridity index and Horton index on the normalized difference vegetation index, the effect of climate and landscape characteristics on vegetation response is estimated.

Regionalization of CN Parameters for Nakdong River Basin using SCE-UA Algorithm (SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Jung-Jin;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • CN values are changed by various surface condition, which is cover type or treatment, hydrologic condition, or percent impervious area, even the same combination of land use and hydrologic soil group. In this study, CN parameters were regionalized for Nakdong River Basin by Long-Term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA, which is one of the global optimization technique. Six watersheds were selected for calibration (optimization) and periodic validation and two watersheds for spatical validation as ungauged watershed within Nakdong River Basin. Nash-Sutcliffe (NS) values were 0.66~0.86 for calibration, 0.68~0.91 for validation, and 0.60 and 0.85 for ungauged watersheds, respectively. Urban area for the selected watersheds covered high impervious area with 85% for residential area and 92% for commercial/industrial/transportation area. Hydrologic characteristics for crop area was similar to row crop with contoured treatment and poor hydrologic condition. For the forested area, hydrologic characteristics could be clearly distinguished from the leaf types of plant. Deciduous, coniferous, and mixed forest showed low, moderate, and high runoff rates by representing wood with fair and poor hydrologic condition, and wood-grass combination with fair hydrologic condition, respectively. CN parameters from this study could be strongly recommended to be used to simulate runoff for ungauged watershed.

Hydrologic Performance Characteristics of Small Hydro Power Resources for River Systems (수계별 소수력자원의 수문학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • The hydrologic performance characteristics of small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems.

Analysis on Design Parameters of Small Hydropower Sites with Rainfall Conditions (강우상태에 따른 소수력발전입지의 설계변수 특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The correlation between hydrologic performance design parameters of small hydro power(SHP) sites and rainfall condition have been analyzed for major river systems. The model, which can predict flow duration characteristic of stream, was developed to estimate the inflow caused from rainfall. And another model to predict hydrologic performance for SHP plants is established. Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems. It was found that the hydrologic performance design parameters such as specific design flowrate and specific output were affected by rainfall condition in basin area of SHP sites.

Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model (SWAT-K 모형을 이용한 설마천 유역의 수문성분 해석)

  • Kim, Nam-Won;Lee, Ji-Eun;Chung, Il-Moon;Kim, Dong-Pil
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1363-1372
    • /
    • 2008
  • In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma-Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Construction Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.

pollutant Load Characteristics of a Agricultural Watershed in Juam Lake (주암호 농업유액 오염부하 특성)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Han, Kuk-Heon;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.433-436
    • /
    • 2002
  • A subwatershed within Juam Lake was monitored to identify hydrologic and water quality characteristics. Rainfall record was collected and flow rate measurement and water quality sampling were conducted periodically at the watershed outlet. Hydrologic response and pollutant load characteristics were analyzed based on observed data.

  • PDF

Applications of A Hydrologic Model to Small Watersheds -Description of Model Components- (小流域 水文模型의 開發과 應小流域 水文模型의 開發과 應用(I) -模型의 構成-)

  • Park, Seung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.125-132
    • /
    • 1984
  • A physically-based, distributed, parametric hydrologic model PARK 10 is described and its test results with three agricultural watersheds are presented. The model uses a rectangular grid system to depict hydrologic characteristics of a watershed, and thus, has potentials of identifying the effects of changes in land uses and/or other activities. The model is being tested with small watersheds in the pennisula.

  • PDF