• Title, Summary, Keyword: hydrophilic polymer

Search Result 388, Processing Time 0.032 seconds

Selective Array of Polystyrene Beads by Using Nanometer-Scaled Hydrophilic Thin Film Patterning (나노미터 규격의 친수성 박막 패터닝을 이용한 선택적 폴리스티렌 입자 배열)

  • Kang, Jung-Hwa;Kim, Kyoung-Soeb;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.103-104
    • /
    • 2007
  • Nanometer-scaled polymer beads, such as polystyrene beads, were used as nanometer fabrication materials due to their some advantages such as self-assembled monolayer, nanometer scaled size and excellent compatibility with silicon based devices. Thus, the investigation on these properties of polymer beads was required. It is difficult to control the array of polystyrene beads on silicon substrate. In this study, we investigated the condition of selective array of polystyrene beads on nanometer-scaled hydrophilic surface which was obtained by APS coating. A tilting method was used to array the polystyrene beads selectively on the substrate. The polystyrene beads could be arrayed selectively by this method. From these results, we verified that there are possibilities to fabricate unique tools for the nanometer-scaled electrical devices.

  • PDF

Characterization of Acetylene Plasma-Polymer Films: Recovery of Surface Hydrophobicity by Aging

  • Kim, Jeong-Ho;Kim, Tae-Hyung;Oh, Jung-Geun;Noh, Seok-Hwan;Lee, Jeong-Soo;Park, Kyu-Ho;Ha, Sam-Chul;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2589-2594
    • /
    • 2009
  • Aging phenomena of plasma polymer films were studied by using the surface analysis techniques of contact angle measurement, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), and atomic force microscopy (AFM). The polymer films were grown on an aluminum substrate by using a plasma polymerization method from a gas mixture of acetylene and helium, and the films were subsequently modified to have a hydrophilic surface by oxygen plasma treatment. Aging of the polymer films was examined by exposing the samples to water and air environments. The aging process increased the hydrophobicity of the surface, as revealed by an increase in the advancing contact angle of water. XPS analysis showed that the population of oxygen-containing polar groups increased due to the uptake of oxygen during the aging, whereas TOF-SIMS analysis revealed a decrease in the polar group population in the uppermost surface layer. The results suggest that the change in surface property from hydrophilic to hydrophobic nature results from the restructuring of polymer chains near the surface, rather than compositional change of the surface. Oxidative degradation may enhance the mobility and the restructuring process of polymer chains.

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Evaluation of interaction between organic solutes and a membrane polymer by an inverse HPLC method

  • Kiso, Yoshiaki;Hosogi, Katsuya;Kamimoto, Yuki;Jung, Yong-Jun
    • Membrane Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-182
    • /
    • 2014
  • Organic compounds are adsorbed on RO/NF membranes, and the adsorption may influence the rejection of organic compounds by the membranes. Because almost RO/NF membranes are composite membranes, the results obtained by adsorption experiment with using membrane pieces are unable to avoid the influence by the support membrane. In this work, the interaction between membrane polymer and organic solutes was examined by an inverse HPLC methodology. Poly (m-phenylenetrimesoylate), the constituent of skin layer of RO/NF membranes, was coated on silica gel particles and used as a stationary phase for HPLC. When water was used as a mobile phase, almost hydrophilic aliphatic compounds were not effectively adsorbed on the stationary phase, although hydrophobic compounds were slightly adsorbed. The results indicated that the hydrophilic aliphatic compounds are useful probe solutes to examine the molecular sieving effect of a membrane. When water was used as a mobile phase, the aromatic compounds were strongly retained, and therefore $CH_3CN/H_2O$ (30/70) was used as a mobile phase. It was revealed that the adsorption of aromatic compounds was controlled by stacking between solute and polymer and was hindered by non-planar structure and substituents.

Metallization of Polymers Modified by Ton-Assisted Reaction (IAR)

  • J.S. Cho;Bang, Wan-Keun;Kim, K.H.;Sang Han;Y.B. Sun;S.K. Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2001
  • Surfaces of PTFE and PVDF were modified by ion-assisted reaction (IAR) in which 1 keV $Ar^{+}$ ions were irradiated on the surface of the polymer with varying ion dose in an oxygen gas environment, and Cu, Pt, Al and Ag thin films were deposited on the modified polymers. Wettability of the modified polymers was largely improved by the formation of hydrophilic groups due to chemical reaction between polymer surface and the oxygen gas during IAR. The change in wettability in the modified polymers was also related to the change in surface morphology and roughness. Adhesion between metal films and polymers modified by IAR was significantly improved, so that no detachment was possible in the $Scotch^{TM}$ tape test. The increase of adhesion strength between the metal film and the modified PVDF was mainly attributed to the formation of hydrophilic groups, which interacted with the metal film. In the case of the modified PTFE, the enhanced adhesion to metal film could be explained by the change in surface morphology together with the formation of hydrophilic groups. The electrical properties of the metal films on the modified polymers were also investigated.

  • PDF

Effect of Hydrophilic Polymers on the Release of BCNU from BCNU-loaded PLGA Wafer (친수성 고분자가 BCNU 함유 PLGA 웨이퍼로부터 BCNU의 방출에 미치는 효과)

  • 안태군;강희정;문대식;이진수;성하수
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.670-679
    • /
    • 2002
  • 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is one of the effective chemotherapeutic agents which has been used clinically for treating malignant glioma. Poly(D,L-lactide-co-glycolide) (PLGA, molecular weight: 20000 g/mole. mole ratio of lactide to glycolide 75 : 15) is a well known biodegradable polymer used as a drug carrier for drug delivery system. In this study, we investigated the BCNU release behaviour of BCNU-loaded PLGA wafers containing poly (N-vinylpyrrolidone) (PVP) or polyethyleneoxide (PEO) and the effect of hydrophilic polymers incoporated in the wafers. BCNU-loaded PLGA microparticles with or without hydrophilic polymers were prepared by a spray drying method and fabricated into wafers by direct compression. Encapsulation efficiency of BCNU-loaded PLGA microparticles containing PVP and PEO was 85 ∼ 97% and crystallinity of BCNU encapsulated in PLGA decreased significantly initial release amount and release rate of BCNU increased with the increasing PVP or PEO amount. Morphological change and mass loss of wafers during the release test were confirmed that hydration and degradation of PLGA would be facilitated with an increase of hydrophilic polymers.

Interface control in polymer/clay nanocomposites

  • Lee, Sang-Soo;Park, Min;Kim, Junkyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.11-15
    • /
    • 2003
  • In order to suppress a repulsive interfacial energy between hydrophilic clay and hydrophobic polymer matrix in preparing a polymer/clay nanocomposite, a third component of amphiphilic nature such as poly($\varepsilon$-caprolactone) (PCL) was introduced into the model system of styrene-acrylonitrile copolymers (SAN)/Na-montmorillonite. Once $\varepsilon$-caprolactone was polymerized in the presence of Na-rnontmorillonite, the successful ring-opening polymerization of $\varepsilon$-caprolactone and the well-developed exfoliated structure of PCL/Na-montmorillonite mixture were confirmed, Thereafter, SAN was melt-mixed with PCL/Na-montmorillonite nanocomposite, which resulted in that SAN matrix and PCL fraction were completely miscible to form homogeneous mixture with retention of the exfoliated state of Na-montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer/clay interface and contributes the improvement of mechanical properties of the nanocomposites.

  • PDF