• Title/Summary/Keyword: hydrophobic film

Search Result 189, Processing Time 0.033 seconds

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Preparation and Cellular Uptake of Hydrophobic Quantum Dots Encapsulated in Poly-L-Lactic Acid Film (소수성 양자점을 함유한 Poly-L-Lactic Acid film의 제조 및 세포흡수 연구)

  • Lee, Ji-Sook;Woo, Kyoung-Ja;Chung, He-Sson
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • To overcome the stability problem of hydrophilic quantum dot (Q-dot), cellular uptake of hydrophobic instead of hydrophilic Q-dot was studied in the hope to find a simple method to use Q-dot as a cellular imaging probe. Hydrophobic Q-dot and poly-L-lactic acid (PLLA) were co-dissolved in chloroform to prepare stable films. Due to the cellular compatibility of PLLA, adherent cells were cultured on the film to observe the degree of Q-dot uptake and cytotoxicity of the prepared films. The results show that Q-dots were absorbed into NIH3T3 and EMT6 cells. Cellular uptake was also observed when hydrophobic Q-dots were coated directly on a glass plate. PLLA/Q-dot film and Q-dot coated on glass plate did not show major cytotoxicity. In vivo tumor model was also used to show the uptake of Q-dot from the PLLA/Q-dot film to the tumor site.

Nanotribological Characteristics of Plasma Treated Hydrophobic Thin Films on Silicon Surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • 윤의성;양승호;공호성;고석근
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM (atomic force microscope) and LFM (lateral force microscope) modes in various .ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface were superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

Deposition of Super Hydrophobic a-C:F Films by Dielectric Barrier Discharge at Atmospheric Pressure

  • Kim, Duk-Jae;Kim, Yoon-Kee;Han, Jeon-Geon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.50-54
    • /
    • 2011
  • Hydrophobic a-C:F film was coated on polycarbonate film with $CF_4$, $C_2F_6$ and HFC ($C_2F_4H_2$) gas in helium discharge generated by 5~100 kHz AC power supply at atmospheric pressure and room temperature. The highest water contact angle of the a-C:F film formed with $He/C_2F_6$ mixed gas is $155^{\circ}$. X-ray photoelectron spectrum showed that there was 40% of C-$CF_3$ bond at the surface of the super hydrophobic film. The contact angle and deposition rate were decreased with increasing substrate temperature. The contact angle was generally increased with the surface roughness of the film. The contact angle was high when the surface microstructure of the film was fine and sharp at the similar roughness and chemical composition of the surface.

Nanotribological characteristics of plasma treated hydrophobic thin films on silicon surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • Yoon, Eui-Sung;Park, Ji-Hyun;Yang, Seung-Ho;Han, Hung-Gu;Kong, Ho-Sung;Koh, Seok-Keun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.35-42
    • /
    • 2001
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface was superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

  • PDF

Fabrication of Hydrophobic Anti-Reflection Coating Film by Using Sol-gel Method (Sol-gel 법을 이용한 내오염 반사방지 코팅막 제조)

  • Kim, Jung-Yup;Lee, Ji-Sun;Hwang, Jonghee;Lim, Tae-Young;Lee, Mi-Jai;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.689-693
    • /
    • 2014
  • Anti-reflection coating films have used to increase the transmittance of displays and enhance the efficiency of solar cells. Hydrophobic anti-reflection coating films were fabricated on a glass substrate by sol-gel method. To fabricate an anti-reflection film with a high transmittance, poly ethylene glycol (PEG) was added to tetraethyl orthosilicate (TEOS) solution. The content of PEG was changed from 1 to 4 wt% in order to control the morphology, thickness, and refractive index of the $SiO_2$ thin films. The reflectance and transmittance of both sides of the coated thin film fabricated with PEG 4 wt% solution were 0.3% and 99.4% at 500 nm wavelength. The refractive index and thickness of the thin film were n = 1.29 and d = 105 nm. Fluoro alkyl silane (FAS) was used for hydrophobic treatment on the surface of the anti-reflection thin film. The contact angle was increased from $13.2^{\circ}$ to $113.7^{\circ}$ after hydrophobic treatment.

Fluidic Manipulating in Microchannels Using Hydrophobic Patterns (소수성 패턴을 이용한 미세유로에서의 유체 조작)

  • Lee, Sang-Ho;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.583-585
    • /
    • 2000
  • This study reports the fluidic handling method using hydrophobic patterns inside PDMS microchannels. In order to obtain hydrophobic patterns, we pattern fluorcarbon(FC) film surfaces by lift-off process. FC films are deposited by spin coating method and plasma polymerization method. Hydrophobic surfaces are used as the barriers to control fluid flow. Injected liquid is spontaneously filled up inside PDMS-microchannels by the capillary action. Liquid flow stops when it meets hydrophobic regions which can be the barrier against fluid flow. Then, again, when liquid is pressurized externally, liquid can move toward another hydrophilic region by external air pressure. Contact angle analyses are performed on fluorocarbon films to estimate the wettability of film surfaces.

  • PDF

A Highly Sensitive Humidity Sensor Using a Modified Polyimide Film

  • Kim, Yong-Ho;Lee, Joon-Young;Kim, Yong-Jun;Kim, Jung-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • This paper presents the design, fabrication sequence and measurement results of a highly sensitive capacitive-type humidity sensor using a polyimide film without hydrophobic elements. The structure of the humidity sensor is MIM (metalinsulator-metal). For a high sensitivity, a modified aromatic polyimides as a moisture absorbing layer has been synthesized instead of using general polyimides containing hydrophobic elements. The polyimide film was obtained by synthesizing and thermally polymerizing polyamic acid composed of m-pyromellitic dianhydride, phenelenediamine and dimethylacetamide. Characteristics of fabricated sensors which include sensitivity, hysteresis and stability have been measured. The measurement result shows the percent normalized capacitance change of 0.37/%RH over a range from 10 to 90%RH, hysteresis of 0.77% over the same %RH range and maximum drift of 0.25% at 50%RH. The result shows that the developed humidity sensor can be applied to evaluate a hermeticity of various sensors and actuator systems as well as micro packages.

Control of Wettability Using Regularly Ordered Two-Dimensional Polymeric Wavy Substrates

  • Yi, Dong Kee
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850120.1-1850120.9
    • /
    • 2018
  • Two-dimensional poly(dimethylsiloxane) (PDMS) films with wavy patterns were studied in order to investigate reversible and irreversible wetting effects. Pre-strained, surface oxidized layers of PDMS were used to form relieved wavy geometries, on which hydrophobic functionalization was carried out in order to produce irreversible wetting effects. Wavy-patterned PDMS films showed time-dependent reversible wetting effects. The degree of surface wettability could be tuned by the choice of wavy groove geometries. And the groove geometries were controlled via $O_2$ plasma treatment and mechanical pre-straining. The pre-strained, buckled PDMS films were applied to the fabrication of hydrophobic polystyrene nano-patterns using colloidal self-assembly, where the colloids were arrayed in two-dimensional way. The wavy polystyrene films were found to be more hydrophobic relative to flat polystyrene films. The grooving methodology used in this study could be applied to enhancing the hydrophobicity of other types of polymeric thin films, eliminating the need for chemical treatment.