• Title/Summary/Keyword: hydroxypropyl methylcellulose

Search Result 52, Processing Time 0.024 seconds

Preparation of Buccal Patch Composed of Carbopol, Poloxamer and Hydroxypropyl Methylcellulose

  • Chun, Myung-Kwan;Kwak, Byoung-Tae;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.973-978
    • /
    • 2003
  • A polymeric film composed of Carbopol, Poloxamer and hydroxypropyl methylcellulose was prepared to develop a buccal patch and the effects of composition of the film on adhesion time, swelling ratio, and dissolution of the film were studied. The effects of plasticizers or penetration enhancers on the release of triamcinolone acetonide (TAA) were also studied. The hydrogen bonding between Carbopol and Poloxamer played important role in reducing swelling ratio and dissolution rate of polymer film and increasing adhesion time. The swelling ratio of the composite film was significantly reduced and the adhesion time was increased when compared with Carbopol film. As the ratio of Poloxamer to hydroxypropyl methylcellulose increased from 0/66 to 33/33, the release rate of TAA decreased. However, no further significant decrease of release rate was observed beyond the ratio of 33/33. The release rate of TAA in the polymeric film containing polyethylene glycol 400, a plasticizer, showed the highest release rate followed by triethyl citrate, and castor oil. The release rate of TAA from the polymeric film containing permeation enhancers was slower than that from the control without enhancers. Therefore, these observations indicated that a preparation of a buccal patch is feasible with the polymeric film composed of Cabopol, Poloxamer and hydropropyl methylcellulose.

Swelling and Drug Release Behavior of Tablets Coated with Aqueous Hydroxypropyl Methylcellulose Phthalate (HPMCP) Nanoparticles

  • Kim, Il-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.297.1-297.1
    • /
    • 2003
  • Organic solvent-based enteric coating technology using hydroxypropyl methylcellulose phthalate (HPMCP) has been developed for many years due to low water solubility of HPMCP. In this work, aqueous HPMCP nanoparticles (HPMCP-NPs) were prepared by neutralization emulsification method using HPMCP powder and ammonium hydroxide (NH40H) in the absence of any organic solvent and emulsifier. (omitted)

  • PDF

Synthesis and Characterization of Cellulose-Hybrid Polystyrene Nanoparticles by Using Reactive Hydroxypropyl Methylcellulose Phthalate (반응형 히드록시프로필 메틸셀룰로오스 프탈레이트를 이용한 셀룰로오스 혼성 폴리스티렌 나노입자의 합성 및 특성 분석)

  • Cheong In-Woo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.437-444
    • /
    • 2006
  • Reactive hydroxypropyl methylcellulose phthalate (reactive HPMCP) was synthesized by using a stepwise urethane reaction with isophorone diisocyanate (IPDI) and 2-hydroxyethyl moth acrylate (HEMA). Molecular weight, acid number, and critical micelle concentration (CMC) of the synthesized reactive HPMCP and pristine HPMCP were measured and used as a polymeric surfactant in the emulsion polymerizations of styrene. In the preparation of HPMCP-hybrid poly styrene nanoparticles, 6, 9, 12, 18, and 24 wt% of HPMCPs were introduced, and the maximum rate of polymerization ($R_{p,max}$), the average number of radicals per particle (n), particle size distribution were investigated. In addition, core - shell morphology of the nanoparticles were observed by using TEM and their thermal stabilities were measured by using TGA. Reactive HPMCP showed higher $R_{p,max}$, smaller particle size, larger values of n and gel contents as compared with pristine HPMCP, due to the vinyl groups from HEMA, which can be reacted with styrene oligomers, in the reactive HPMCP.

Characteristics of Silver Nanow ire Solution and Film Depending on Hydroxypropyl Methylcellulose Adhesion Promoter Addition (Hydroxypropyl methylcellulose 접착력 증진제 첨가에 따른 은 나노와이어 용액 및 필름의 특성 변화)

  • Seungju Kang;Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.54-59
    • /
    • 2023
  • Silver nanowire-based transparent electrodes are very attractive as a next-generation flexible and transparent electrode that can replace ITO-based flexible electrodes because they have excellent conductivity, transmittance and mechanical flexibility. However, weak understanding of the silver nanowire solution for the fabrication of silver nanowire-based transparent electrodes often cause abnormal operation of the electrical device or peeling problem of the electrode films when applied to electronic devices. Here, we studied a Hydroxypropyl Methylcellulose (HPMC) adhesion promoter, which is one of the additives for silver nanowire solution, to improve the understanding of silver nanowire solution. In detail, it is characterized how the HPMC changes the properties of silver nanowire solution and silver nanowire film, which is fabricated with silver nanowire solution including the HPMC adhesion promoter. As the characteristics of solution, polar surface tension and dispersive surface tension were measured. As the film characteristics, surface energy, surface morphology, silver nanowire density, and sheet resistance were analyzed.

The Effect of HPMC Concentration on the Morphology and Post Drawing of Wet Spun Regenerated SF/HPMC Blend Filaments

  • Ko, Jae-Sang;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.181-185
    • /
    • 2009
  • In this paper, the regenerated silk fibroin (SF)/hydroxypropyl methylcellulose (HPMC) blend filaments were prepared by wet spinning and the effect of HPMC concentration on the post drawing and morphology of blend filaments was elucidated. The result of maximum draw ratio indicated that the wet spinnability of wet spun SF / HPMC was improved with increasing HPMC concentration until 8% and remained constant after that concentration. The SEM observation revealed that the enhanced wet spinnability of blend filaments was strongly related to the morphological change by increasing HPMC concentration. Regardless of HPMC concentration, as SF content was reduced, the wet spinnability of blend film decreased resulting in reduced maximum draw ratio. It was also found by SEM observation that the cross section of blend filament deviated from circularity with an increase of HPMC content.

Synthesis and Characterization of HPMC Derivatives as Novel Duodenum-Specific Coating Agents

  • Huang Yuan;Zheng ling Ii;Liu Jun;Zhang Zhi rong
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.364-369
    • /
    • 2005
  • HPMC (Hydroxypropyl methylcellulose) was chemically modified, using maleic anhydrides, to obtain pH-sensitive HPMCAM (Hydroxypropyl methylcellulose acetate maleate) polymers for use as novel duodenum-specific coating agents. The pharmaceutical properties of HPMCAM, such as film forming, acid values, pH-sensitive values, water vapor permeability, tensile strength and Tg, were investigated, and found to show good film forming properties. The pH­sensitive values were 3.0 to 3.7. In vitro results demonstrate that HPMCAM could completely suppress drug release within 2h in a simulated gastric fluid (pH 1.2) and rapidly release the drug in a simulated pathological duodenal fluid (pH 3.4). These results indicate that HPMCAM might be a useful material for a duodenum-specific drug delivery system.

Application of Carrageenan for Sustained Drug Release (약물의 서방출을 위한 ${\kappa}-Carrageenan$의 응용)

  • Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.213-216
    • /
    • 1993
  • ${\kappa}-Carrageenan$, an anionic polysaccharide, was employed in tablet formulations and its function as a drug release sustaining agent was investigated. Tablets composed of ${\kappa}-carrageenan$ and hydroxypropyl methylcellulose were fabricated by using direct compression method. Lactose and sodium alginate were utilized as controls for ${\kappa}-carrageenan$. Drug release experiments performed at pHs 1.2 and 7.4 revealed that ${\kappa}-carrageenan$ retains pH-dependent sustained release effects due to its anionic characteristics. Also, the ionic interaction between ${\kappa}-carrageenan$ and drugs exerted significant affects on drug release kinetics. ${\kappa}-Carrageenan$ was found out to be a useful additive for sustained release tablet formulations.

  • PDF