• Title/Summary/Keyword: hyperelastic material

Search Result 62, Processing Time 0.023 seconds

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio (신장률 변화에 따른 초탄성 재료의 비선형 재료모델 비교 연구)

  • Lee, Kangsu;Ki, Minsuk;Park, Byoungjae
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.253-260
    • /
    • 2018
  • Recently, the application of non-steel materials in ships and offshore plants is increasing because of the development of various nonlinear materials and the improvement of performance. Especially, hyper-elastic materials, which have a nonlinear stress-strain relationship, are used mainly in marine plant structures or ships where impact relaxation, vibration suppression, and elasticity are required, while elasticity must be maintained, even under high strain conditions. In order to simulate and evaluate the behavior of the hyperelastic material, it is very important to select an appropriate material model according to the strain of the material. This study focused on the selection of material models for hyperelastic materials, such as rubber used in the marine and offshore fields. Tension and compression tests and finite element simulations were conducted to compare the accuracy of the nonlinear material models due to variations in the stretch ratio of hyper-elastic material. Material coefficients of nonlinear material models are determined based on the curve fitting of experimental data. The results of this study can be used to improve the reliability of nonlinear material models according to stretch ratio variation.

Sealing analysis of sealing rings with respect to rubber material properties for high pressure valve of FCEV (FCEV용 고압 밸브 실링부의 고무재질에 따른 기밀해석)

  • Park, G.Y.;Yang, K.J.;Ro, E.D.;Park, J.S.;Chon, M.S.;Lee, H.W.
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.13-16
    • /
    • 2017
  • The design of sealing mechanisms of a manual pressure valve was analyzed with FE analysis for a hydrogen fuels charge and discharge system of FCEV. The damage prediction of the O-ring with respect to the material models of rubbers was calculated by the gap analysis of the backup ring and O-ring according to the internal pressure. Two kinds of the rubber material characteristic models were adopted to the O-ring. One was the linear elastic and the other was hyperelastic of Ogden $3^{rd}$ order model. The experimental data of urethane of Shore hardness 90 was utilized to the curve fitting of hyperelastic properties. It was found that the contact pattern of the backup ring was different in two models and the sealing mechanism was better in the case of the hyperelastic characteristic model.

A Simple Method for the Estimation of Hyperelastic Material Properties by Indentation Tests (압입시험을 통하여 초탄성 재료 물성치를 평가하는 단순한 방법)

  • Song, Jae-Uk;Kim, Min-Seok;Jeong, Gu-Hun;Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.273-278
    • /
    • 2019
  • In this study, a new simple method for the estimation of hyperelastic material properties by indentation tests is proposed. Among hyperelastic material models, the Yeoh model with three material properties ($C_{10}$, $C_{20}$, $C_{30}$) is adopted to describe the strain energy density in terms of strain invariants. Finite element simulations of the spherical indentation of hyperelastic materials of the Yeoh model with different material properties are performed to establish a database of indentation force-displacement curves. The indentation force-displacement curves are fitted by cubic polynomials, which are approximated as a product of third-order polynomials of ($C_{10}$, $C_{20}$, $C_{30}$). A regression analysis is conducted to determine the coefficients of the equations for the indentation force-displacement curve approximations. A regression equation is used to estimate the hyperelastic material properties. The present method is verified by comparing the estimated material properties with true values.

Numerical approach to elucidate the behavior of seismic lining adopting hyperelastic material model (수치해석을 이용한 초탄성 재료 기반 면진라이닝의 거동 규명)

  • Sung Kwon Ahn;Hee Up Lee;Jeongjun Park;Jiwon Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • Considering the continuing discussion about the Korea-Japan undersea tunnel, it is necessary to conduct a scientific investigation into tunnel deformation associated with large ground movements at fault. This paper presents findings obtained from numerical experiments to investigate a seismic lining that adopts rubber-like material. We utilized the user material subroutine to obtain the deformation gradient of the hyperelastic material. Additionally, polar decomposition is used to analyze the results, where the data is displayed on a series of two-dimensional planes using the principal direction, which facilitates a better insight into the deformation. Tunnel engineers could refer to this paper for the procedure to investigate the deformation of hyperelastic material.