• Title/Summary/Keyword: hypoeutectoid steel

Search Result 6, Processing Time 0.022 seconds

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향)

  • Lee, Seung-Yong;Jeong, Sang-Woo;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

Effect of Microstructural Factors on Strength and Ductility in Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 강도와 연성에 미치는 미세조직적 인자의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Lee, Sang-Yoon;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • This article presents a study on the tensile properties of hypoeutectoid steels with different ferrite-pearlite microstructures. Nine kinds of hypoeutectoid steel specimens were fabricated by varying carbon content and isothermal transformation temperature. The microstructural factors such as ferrite & pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured and then tensile tests were carried out on the specimens in order to investigate the correlation of the microstructural factors with strength and ductility. The pearlite volume fraction usually increased with decreasing transformation temperature, while the pearlite interlamellar spacing and cementite thickness decreased mostly with decreasing transformation temperature, irrespective of carbon content. The tensile test results showed that the yield and tensile strengths of all the steel specimens increased and their ductility was also improved as the transformation temperature decreased. For the steel specimens investigated, the difference in the transformation temperature dependence of strength and ductility could be explained by the fact that the variation in pearlite fraction with transformation temperature noticeably affected various microstructural factors such as pearlite interlamellar spacing and cementite thickness associated with pearlite fracture mechanism such as void initiation, cementite necking, and cracking.

Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement (보자력 측정에 의한 아공석강 및 공석강의 열처리에 따른 미세조직 평가)

  • Byeon Jai Won;Kim C. S.;Kwun S. I.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.565-572
    • /
    • 2004
  • The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

Heat Treatment Analysis on Low-Alloy Steel (저합금강 소재의 열처리해석 기술개발)

  • Choi Y. S.;Kwak S. Y.;Choi J. K.;Kim J. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.215-223
    • /
    • 2005
  • A numerical analysis program is developed by FDM scheme for the prediction of microstructural transformation during heat treatment of steels. In this study, multi-phase model was used fur description of diffusional austenite transformations in low-alloy hypoeutectoid steels during cooling after austenitization. A fundamental property of the model consisting of coupled differential equations is that by taking into account the rate of austenite grain growth, it permits the prediction of the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimate the amount of martensite also by using K-M eq. In order to simulate the microstructural evolution during tempering process, another Avrami-type eq. was adopted and method for vickers hardness prediction was also proposed. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Metallurgical Study of Iron Artifacts from Guryong-ri Site in Ungcheon, Boryeong

  • Choi, Eun Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.289-300
    • /
    • 2022
  • In the 6th and 7th centuries, 5 iron artifacts excavated form the Baekje Stone Tomb in Guryong-ri site, Ungcheon, Boryeong, were studied. The sample were metal microscopic observation, SEM-EDS analysis and Raman micro-spectroscopy analysis were conducted to understand the metallurgical characteristics. The microstructure observation showed the presence of ferrite and pearlite throughout, and differences in carbon content existed depending on the direction. Non-metallic inclusions were in the form of long lines, and most of them were wüstite, fayalite. It is indicated that the artifacts were forge welded using hypoeutectoid steel, with signs of carburizing and decarburizing processes. Some crystals with high P2O5, TiO2, CaO content were identified as sarcopside, ulvöspinel, and perovskite, respectively, through Raman spectroscopy. A comparison of the results with previous studies on the sites of Bujang-ri site in Seosan and Bongseon-ri site in Seocheon, which are adjacent sites in the coastal area, revealed that, while heat treatment technology was available, the artifacts were not heat-treated considering the purpose for use for these artifacts. The chemical composition of the non-metallic inclusions P2O5, TiO2, CaO were plotted in proportions to SiO2 and compared with adjacent sites. Considering that the P2O5/SiO2 ratio was widely distributed, the refining technology was not uniform. In addition, the TiO2/SiO2 ratio was found to be higher than that of other sites, meaning that a titanium-containing ore was used to manufacture the artifacts, unlike in surrounding sites, but it is not detected in all artifacts, so it may have been affected by various factors such as furnace walls in addition to raw materials. Although slag formers were used, considering the CaO/SiO2 ratio and the (Al2O3/SiO2)/(CaO/SiO2) ratio, which appear to be similar to the surrounding sites, but it is possible that CaO containing raw ore was used because it is also affected by the components of raw ore. As a result of the study, it is highly likely that ore different from that of the surrounding sites was used for production, but a more comprehensive comparative study with the surrounding sites is needed in the future.