• Title/Summary/Keyword: idle speed controller

Search Result 26, Processing Time 0.02 seconds

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

A study on the idle speed control under load disturbance (변동에 강인한 공회전속도 제어에 관한 연구)

  • 최후락;장광수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1115-1119
    • /
    • 1996
  • The objective of this paper is to study on the idle speed control sing the fuzzy logic controller under load disturbance. The inputs of the fuzzy controller are error of rpm and rpm variation. The output of fuzzy controller is an ISC motor step. The airflow is controlled by the ISC motor movement and the idle speed is controlled by the airflow control. During the control, air to fuel ratio was checked by LAMBDA sensor. All experiments were carried in real vehicle.

  • PDF

Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer (비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어)

  • 오소력;최재원;김종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

Idle Speed Control of Automotive Engine using Fuzzy Logic (퍼지논리를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.53-62
    • /
    • 1994
  • In this paper, a fuzzy logic-based idle speed controller is designed for automotive engine with a purpose of high efficiency and low pollution. When the idle speed is low engine operation is not smooth, otherwise fuel consumption is incresed. Therefore the idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. By simulation, we show that the idle speed controller has generated a proper control signal as engine condition or enviornment varies, and also operated well for unexpected cases. Also, an engine simulator, which is used as a basic tool for controller design, is developed and utilized for reduction of development time and cost.

  • PDF

A Study on the Idle Speed Control under Load Disturbance (부하변동에 강인한 엔진 공회전 속도제어에 관한 연구)

  • 최후락;장광수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.37-50
    • /
    • 1997
  • The objective of this paper is to study on the idle speed control using the fuzzy logic controller under load disturbance. The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. The inputs of the fuzzy controller are error of rpm and variation of rpm. The output of the fuzzy controller is an ISC motor step and ignition timing. The airflow is controlled by the ISC motor movement and the idle speed is controlled by the airflow control and ignition timing control. During the control, air to fuel was checked by LAMBDA sensor. All experiments were performed in a real vehicle.

  • PDF

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

A Study on the Controller having Disturbances in Spark Ignition Engine (불꽃점화 기관에 외란에 안정한 제어기 연구)

  • 이영춘;정진호;윤여홍;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.153-156
    • /
    • 2000
  • This paper presents an PID type fuzzy based method for nohnear engine idle controller The output is a duty cycle(DC) for driving a idle speed cont개l valve(1SCV). For precise control of SI engine, the CPS sensor and coolant temperature are used. Visual C* language is used to make simulation panel for the fast and precise idle speed control. The dSPACE board and supported Control desk program is used in experiment ta the same purpose as simulation. The experimental results have a good agreement with simulation ones.

  • PDF

A Study on Idle Speed Control Using Fuzzy Logic (퍼지 논리를 이용한 공회전 속도 제어에 관한 연구)

  • Ko, D.W.;Lee, Y.N.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.23-29
    • /
    • 1994
  • The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. Moreover, it is very difficult to guarantee the stability and robustness of the system due to the linguistic expression of fuzzy control. However, fuzzy logic control has succeeded in many control problems that the conventional control theory has difficulties to deal with. As a result, this control theory is applied to the engine control system which a mathematical model is difficult. In this study, the fuzzy logic is applied to obtain the gain of PI control at idle speed control system, and a simple engine model is developed in order to perform simulation. Experimental results show that the response to reach the target engine speed at idle speed control system is improved by adopting the gain obtained with fuzzy logic.

  • PDF