• Title/Summary/Keyword: immune cell migration

Search Result 75, Processing Time 0.026 seconds

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.

Modulation of Glial and Neuronal Migration by Lipocalin-2 in Zebrafish

  • Kim, Ho;Lee, Shin-Rye;Park, Hae-Chul;Lee, Won-Ha;Lee, Myung-Shik;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.342-347
    • /
    • 2011
  • Background: Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology. Methods: Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro. Results: Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS. Conclusion: Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

Inhibition of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Natural Killer Cell Line, NK-92MI (Corticotropin-Releasing Hormone (CRH)에 의한 인간 자연 살해 세포(NK-92MI)의 Migration 억제)

  • Cheon, So-Young;Bang, Sa-Ik;Cho, Dae-Ho
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.247-251
    • /
    • 2005
  • Background: Natural killer (NK) cells are CD3 (-) CD14 (-) CD56 (+) lymphocytes. They play an important role in the body's innate immune response. They can induce spontaneous killing of cancer cells or virus-infected cells via the Fas/Fas ligand or the granzyme/perforin systems. The corticotropin-releasing hormone (CRH) is an important regulator for the body's stress response. It promotes proliferation and migration of various cancer cells through the CRH type 1 receptor under stress, and also inhibits NK or T cell activity. However, the relationship of CRH and NK cell migration to the target has not been confirmed. Herein, we study the effect of CRH on NK cell migration. Methods: We used the human NK cell line, NK-92MI, and tested the expression of CRH receptor type 1 on NK-92MI by RT-PCR. This was to examine the effect of CRH on tumor and NK cell migration, thus NK cells (NK-92MI) were incubated with or without CRH and then each CRH treated cell's migration ability compared to that of the CRH untreated group. Results: We confirmed that CRH receptor type 1 is expressed in NK-92MI. CRH can decrease NK cell migration in a time-/dose-dependent manner. Conclusion: These data suggest CRH can inhibit NK cell migration to target cells.

Enhancement of Cell Migration by Corticotropin-Releasing Hormone (CRH) in Human Gastric Cancer Cell Line, MKN-28 (Corticotropin-Releasing Hormone (CRH)에 의한 인간 위암 세포(MKN-28)의 Migration 증가)

  • Cheon, Soyoung;Cho, Daeho
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.244-249
    • /
    • 2004
  • Background: Corticotropin-Releasing Hormone (CRH), an important regulator of stress response, has a potent immunoregulatory effect with the ability to promote the growth of various cancer through CRH receptor type 1 under stress. Although the metastasized cancers through cell migration are more aggressive than the primary cancers, little is known about the effect of CRH on cell migration. Gastric cancer is prone to metastasize to other tissues and it is reported that gastric cancer is response to various stresses such as oxidative stress. Herein, we studied the relationship between CRH and gastric cancer cell migration. Methods: We used gastric cancer cell line, MKN-28 and tested the CRH receptor type 1 expression on MKN-28 by RT-PCR. To examine the change in the ability of migration by CRH in MKN-28, cells were incubated with CRH and then migration ability was measured using a cell migration assay. Results: We confirmed that CRH receptor type 1 was expressed in MKN-28 and HaCaT cells. The migration ability of MKN-28 cells was increased by CRH in a time-, dose- dependent manner. Conclusion: These data suggest that CRH increases migration ability in gastric cancer cell line and that CRH may be a critical regulator in the metastasis of gastric cancer cell.

Interplay between Inflammatory Responses and Lymphatic Vessels

  • Shin, Kihyuk;Lee, Seung-Hyo
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.182-186
    • /
    • 2014
  • Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.

Effect of a PI3K inhibitor LY294002 on cell migration (세포 이동에서 PI3K 억제제인 LY294002의 효과)

  • Kim, Wonbum;Jeon, Taeck Joong
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.131-136
    • /
    • 2022
  • Cell migration is essential for diverse cellular processes including wound healing, immune response, development, and cancer metastasis. Pi3-kinase (PI3K) is a key regulator for actin cytoskeleton and phosphorylates phosphatidylinositol (4,5)-diphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). High levels of PIP3 by PI3Ks are associated with increased levels of F-actin and pseudopod extension at the leading edge of migrating cells such as neutrophils and Dictyostelium. LY294002 is a well-known PI3K specific inhibitor. Here, we investigated the effect of LY294002 on cell migration. First, we evaluated the appropriate concentration of dimethyl sulfoxide (DMSO) for using as a solvent for LY294002. DMSO is a highly polar organic reagent and one of the most common solvent for organic and inorganic chemicals. Cell morphology and cell migration were unaffected at the concentrations less than 0.1 % DMSO. Therefore, stock solution of LY294002 was prepared so that the final concentration of DMSO was 0.1 % or less when treated. When cells were treated with LY294002, cell migration was increased in a concentration-dependent manner. The maximum speed was detected in the presence of 30 µM LY294002. These results suggest that PI3Ks play a inhibitory role in regulating cell migration in our experimental conditions.

Anti-inflammatory Effect of 9-cis Retinoic Acid on the Human Mast Cell Line, HMC-1

  • Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.149-152
    • /
    • 2007
  • Mast cells play important roles in immune-related diseases, in particular, allergic diseases. Although 9-cis retinoic acid (9CRA) has been known as an immune regulator, its function in mast cells is not characterized well. In a previous paper, we demonstrated that 9CRA differentially decreases both CCR2 expression and the MCP-1-induced chemotactic activity of the human mast cell line, HMC-1 cells. In the present study, we examined the effects of 9CRA on the migration and expressions of inflammatory cytokines in HMC-1 cells. It was found that 9CRA significantly inhibited the migration of HMC-1 cells in response to stem cell factor (P<0.01), and it had no effect on the mRNA and protein expression of c-kit, a receptor binding to SCF. We further investigated the alternation of inflammatory cytokine expression and identified that 9CRA blocked the mRNA and protein expressions of Th2 cytokines such as interleukin (IL)-4 and IL-5. Taken together, our results demonstrate that 9CRA blocks SCF-induced cell movement and the protein secretion of IL-4 and IL-5, and this indicates that 9CRA may have anti-inflammatory effects on mast cells.

  • PDF

Study for Possibility of N,N,N-Trimethylphytosphingosine (TMP) for Management of Chronic Skin Diseases (N,N,N-Trimethylphytosphingosine (TMP)의 염증성 피부질환 치료제 가능성에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Skin disease is one of the most common diseases and its incidence is increasing dramatically in modern society. Specially, many attempts have been made to treat chronic skin inflammation diseases, such as psoriasis and atopic dermatitis, but effective therapies for the immune cell-mediated skin diseases, including psoriasis and atopic dermatitis have not been developed. Until recently, several drug candidates which were claimed to be effective for skin diseases have been reported, but most of them are not used to treat chronic skin disease. Especially, Psoriasis is characterized by excessive growth and aberrant differentiation of keratinocytes, but is fully reversible with appropriate therapy. The trigger of the keratinocyte response is thought to be activation of the cellular immune system, with T cells and various immune-related cytokines. Formation of new blood vessels starts with early psoriatic changes and disappears with disease clearance. Several angiogenic mediators are up-regulated in psoriasis development. Contact- and mediator-dependent factors derived from keratinocytes, mast cells and immune cells may contribute to the strong blood vessel formation of psoriasis. New technologies and experimental models provide new insights into the role of angiogenesis in psoriasis pathogenesis. TMP and its derivatives themselves effectively inhibited in vitro cell migration, tube formation, and the expression of angiogenic factors. However, TMP and its derivatives induced side effects including hemolysis and local side effects. Therefore, in an attempt to reduce the toxicity and the undesirable side effects of TMP and derivatives, a liposomal formulation was prepared and tested for its effectiveness. TMP and derivatives liposomes retained the effectiveness of TMP in vitro while side effects were reduced. These results support the conclusion that TMP effectively inhibits in vitro angiogenesis, with the possibility that use as a psoriasis relief agent.

Effect of Bupleurum falcatum extract on cellular immune responses (시호 추출물이 세포성 면역반응에 미치는 영향)

  • Jung, Young-mee;Kim, Jong-myeon;Song, Hee-jong;Cho, Jeong-goen
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.407-417
    • /
    • 1993
  • Bupleurum falcatum has been used for treatment of inflammation, jaundice, influenza and hepatitis as a traditional orient folk medicine. This experiment was carried out to evaluate the effect of B falcatum extract on cellular immune responses in vivo and in vitro. Antigen binding cell(ABC) assay, antibody production, Arthus and delayed-type hypersensitivity(DTH) reaction against sheep erythrocytes(SRBC) were very depressed in B falcatum extract treated group in vivo. The growth of Staphylococcus aureus in brain heart infusion(BHI) broth containing B falcatum extract was remarkably inhibited. Otherwise, that of Salmonella typhyimurium was not significantly increased in vitro. When B falcatum extract pretreated mice were intraperitoneally(IP) injected S typhimurium and S aureus, respectively, the number of bacteria in peritoneal exudates were time dependent declination compared with those of control, and the weight of spleen and the number of macrophage migration into peritoneal cavity have no difference from those of untreated control. B falcatum extract gradually increased phagocytic activities of peritoneal macrophage against Candida albicans time and dose dependently, and was not significant production of migration inhibiotory factor(MIF). But migration abilities of normal leucocytes in B falcatum extract pretreated group were decreased dose dependently. When B falcatum extract was IP administered, these data indicate that B falcatum extract increases level of serum coticosterone. Therefore, B falcatum extract was indirectly mediated in immune system by serum coticosterone having relation to immunosuppression. These results lead to the conclusion that B falcatum extract acts as a trigger or regulator of cellular immune responses in immune system.

  • PDF

Immunomodulatory Response Induced by Ginseng

  • Kumar, Ashok
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.115-119
    • /
    • 2003
  • There has been continuing interest in the development of synthetic and natural compounds that modify the immune response particularly for the treatment of AIDS and cancer. During the past fifty years, numerous scientific studies have been published on ginseng. Modem human studies have investigated preventive effect of ginseng on several kinds of cancer, its long term immunological effect on HIV patients, its effect on cell mediated immune functions in healthy volunteers. Similarly non clinical studies on animal model system have studied the chemopreventive action of ginseng on cancer and immunological properties of ginseng. The precise mechanism of action of ginseng, however, not clearly understood. Considering its wide-ranging therapeutic effects, this study is being undertaken to elucidate the general mode of action of ginseng, especially to test our hypothesis that its biological action may be mediated by the immune system.