• Title/Summary/Keyword: immunological memory

Search Result 7, Processing Time 0.028 seconds

Pharmacological Activities of Flavonoids (III) Structure-Activity Relationships of Flavonoids in Immunosuppression

  • Kim, Chang-Johng;Cho, Seung-Kil
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.147-159
    • /
    • 1991
  • Effects of twenty-one different flavonoids and their related compounds on the phagocytosis of colloidal carbon by macrophages in liver and spleen humoral immune responses against bacterial $\alpha$-amylase and cellular immune responses against oxazolone and dinitrofluorobenzene were studied in vivo and in vitro. It was shown that most of the flavonoids accelerated significantly the phagocytosis, and they suppressed significantly not only humoral and cellular immune responses but also the development of immunological memory after the antigenic stimulation. Especially, malvin was the most active in phagocysis, and disodium cromoglycate and morin were the most active in humoral and cellular immunosuppression, respectively. Daidzuin had the most potent inhibitory activity in the development of memory cells. The structure-activity relationships of the flavonoids in immunosuppression became apparant from these results: 1. The presence of $C_{2-3}$ double bond and $C_4$ Ketone group in C-ring was important for their immunosuppressive activity. 2. Flavonoids with benzene ring at 2 or 3 position in C-ring showed the almost same activities. 3. The opening of C-ring did not affect their immunosuppressive activity. 4. The glycosylated flavonoids at 3 position in C-ring were less less potent than their aglycones. 5. Di-or tri-hydroxylated flavonoids in B-ring were more potent than mono-hydroxylated. 6. Chromanochromanone also had the immunosuppressive activity.

  • PDF

Effects of Cyclophosphamide on Immunological Memory in Mice (Cyclophosphamide가 마우스의 면역기억에 미치는 영향)

  • Park, Young-Min;Park, Yoon-Kyu;Ahn, Woo-Sup;Ha, Tai-You
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.2
    • /
    • pp.175-184
    • /
    • 1987
  • The use of alkylating agent cyclophosphamide(CY), a widely used antitumor drug is well known as a potent immunosuppressant and has been used as a probe for investigating the functional capabilities of lymphocyte subsets of both T and B cells that play an important role in the regulation of the immune response. The present study was undertaken in an effort to assess the effects of CY on immunological memory in murine model. CY, given as a single dose of CY(250mg/kg) before sensitization with sheep red blood cells(SRBC) enhanced the primary response of Arthus and delayed-type hypersensitivity(DTH), as measured by footpad swelling reaction, but suppressed their tertiary DTH response. The similar CY pretreatment enhanced both the primary and tertiary hemagglutinin(HA) responses to SRBC, and the tertiary antibody response against polyvinylpyrroridone(PVP), a thymus-independent antigen but not the primary response against PVP. CY, given as a single dose of 250mg/kg 2 days before the primary immunization and two doses of 100mg/kg 2 days before the secondary and tertiary immunization, markedly suppressed the tertiary DTH and HA responses to SRBC. However, CY, given as small multiple daily doses(10mg/kg) over 4 days before sensitization but not after sensitization, enhanced the secondary HA response to SRBC. Contact sensitivity to dinitrofluorobenzene(DNFB) was suppressed by the drug, given either as a single large dose(300mg/kg) or as multiple dose(10mg/kg) administered 2 days before, together with or after DNFB sensitization. This suppression was more pronounced and more significant when CY was given as multiple dose. However, the enhancement of the secondary contact sensitivity to DNFB by CY was not clear-cut. The splenectomy appears to increase the enhancing effect of CY on contact sensitivity. These results suggest that CY selectively influences the immune response depending on the time of the drug administration relative to immunization and that the secondary or tertiary immune response involve memory cells with different susceptibilities to CY. Moreover, these results suggest that multiple low doses may sesectivley inhibit suppressor T cell proliferation involving DTH, HA or contact sensitivity without effecting helper T cells, but high doses presumably inhibit helper T cells and suppressor T cells with effecting B cells.

  • PDF

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Stimulatory effects of Bordetella bronchiseptica antigen on bone marrow cells and immune memory responses (골수세포에 대한 Bordetella bronchiseptica 항원의 자극 효과 및 면역기억반응)

  • Yim, Seol-Hwa;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • Bone marrow is a hematological and immunological organ that provides multiple immune cells, including B lymphocytes, and thus plays a critical role in the efficacy of vaccine. We previously demonstrated that Bordetella (B.) bronchiseptica antigen has high immunogenicity in spleen cells, a peripheral immune organ. In this study, we investigated the immunogenicity of B. bronchiseptica antigen in bone marrow cells, a central immune organ. B. bronchiseptica antigen increased the cellular activity of bone marrow cells and significantly enhanced the production of nitric oxide, IL-6, and TNF-${\alpha}$. Bone marrow cells primed with B. bronchiseptica antigen in vivo were harvested and stimulated with the same antigen in vitro. The stimulation of B. bronchiseptica antigen significantly increased the cellular activity and proliferation rate of the primed cells. B. bronchiseptica antigen also greatly induced the production of antigen-specific antibody in the primed cells. Taken together, the present study demonstrated that B. bronchiseptica antigen can stimulate bone marrow cells, a central immune organ, and recall the immune response of the primed bone marrow cells.

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.

Ultraviolet A Induces Immunosuppression, Protection or Memory Enhancement Depending on Dose, while Ultraviolet B is Immunosuppressive and Tolerogenic over a Large Dose Range

  • Halliday, Gary M.;Byrne, Scott N.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2002
  • UVR-induced immunosuppression contributes to skin cancer. The aim was to construct accurate dose response curves for primary and secondary contact sensitivity for solar-simulated UVR (ssUVR; 290-400nm), UVA and UVB as the role of UVA in immunosuppression is controversial. We used a xenon arc source. The mice were immobilised, enabling accurate dosing. C57BL/6 mice were immunosuppressed at half the dose of ssUVR required to cause sunburn but not by higher doses (up to the sunburn dose). Thus, ssUVR causes systemic immunosuppression only over a narrow, low dose range. UVA caused suppression at low but not high doses whereas UVB induced immunosuppression at all doses tested. 8 weeks later the mice were resensitised to assess tolerance. Mice exposed to the minimum immunosuppressive dose of ssUVR prior to primary sensitisation were tolerant to re-sensitisation. However, at higher doses of ssUVR, these mice were protected from tolerance. Interestingly, while low doses of UV A caused immunosuppression, even lower doses enhanced the response to the second sensitisation. Higher doses of UVA had no affect. UVB induced tolerance in a dose related manner. Thus, ssUVR only induces immunosuppression and tolerance over a narrow dose range. Both UVA and UVB are immunosuppressive at this dose, while higher doses of UVA protect from the suppressive effects of UVB. Surprisingly very low doses of UVA enhanced memory development. Thus UVR has complex effects on the immune system depending on dose and spectrum.

  • PDF

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.