• Title/Summary/Keyword: implicit certificate scheme

Search Result 5, Processing Time 0.017 seconds

Design and Implementation of ECQV Implicit Certificate (ECQV 묵시적 인증서의 설계 및 구현에 관한 연구)

  • Seong, Jeong-Gi;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.744-752
    • /
    • 2017
  • ECQV implicit certificate reconstructs the public key from the certificate without validation of the signature unlike the explicit certificate. Like this, the certificate and the public key is implicitly validated when a public key is reconstructed from a certificate. Hence, ECQV implicit certificate is shorter than the explicit certificate due to be only comprised of the public key reconstruction data instead of the signature and the public key, and faster to reconstruct the public key from the certificate than validating the signature. Furthermore, ECQV is well suited for environments and application that resources such as memory and bandwidth are limited because it is shorter the key length, and faster the performance than other cipher cryptography due to be run on ECC. In this paper, we describe prerequisites of ECQV specified in the SECG SEC 4 and issuance of an implicit certificate, reconstruction of the public key from an implicit certificate. Also we designed and implemented ECQV, and measured the performance of it.

A study on ECQV applied the butterfly key expansion algorithm (Butterfly key expansion 알고리즘을 적용한 ECQV에 관한 연구)

  • Sun, Seol-hee;Kim, Eun-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.762-764
    • /
    • 2016
  • The ECQV(Elliptic Curve Qu-Vanstone) is a implicit certificate scheme based on ECC(Elliptic Curve Cryptography). Implicit certificates are smaller and faster than a traditional explicit certificate. Therefore, it can be used in a memory or bandwidth constraint communication environments. Also, the butterfly key expansion algorithm is a method to issue many certificates by using only one public key. In this study, by applying the butterfly key expansion algorithm to ECQV, we suggest a new useful issuing certificate method that can be used in vehicular communication environments.

  • PDF

A Forward-Secure Certificate-Based Signature Scheme with Enhanced Security in the Standard Model

  • Lu, Yang;Li, Jiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1502-1522
    • /
    • 2019
  • Leakage of secret keys may be the most devastating problem in public key cryptosystems because it means that all security guarantees are missing. The forward security mechanism allows users to update secret keys frequently without updating public keys. Meanwhile, it ensures that an attacker is unable to derive a user's secret keys for any past time, even if it compromises the user's current secret key. Therefore, it offers an effective cryptographic approach to address the private key leakage problem. As an extension of the forward security mechanism in certificate-based public key cryptography, forward-secure certificate-based signature (FS-CBS) has many appealing merits, such as no key escrow, no secure channel and implicit authentication. Until now, there is only one FS-CBS scheme that does not employ the random oracles. Unfortunately, our cryptanalysis indicates that the scheme is subject to the security vulnerability due to the existential forgery attack from the malicious CA. Our attack demonstrates that a CA can destroy its existential unforgeability by implanting trapdoors in system parameters without knowing the target user's secret key. Therefore, it is fair to say that to design a FS-CBS scheme secure against malicious CAs without lying random oracles is still an unsolved issue. To address this problem, we put forward an enhanced FS-CBS scheme without random oracles. Our FS-CBS scheme not only fixes the security weakness in the original scheme, but also significantly optimizes the scheme efficiency. In the standard model, we formally prove its security under the complexity assumption of the square computational Diffie-Hellman problem. In addition, the comparison with the original FS-CBS scheme shows that our scheme offers stronger security guarantee and enjoys better performance.

Efficient Multi-Receiver Certificate-Based Encryption Scheme and Its Application (효율적인 인증서기반 다중수신자 암호 기법 및 응용)

  • Sur, Shul;Jung, Chae-Duk;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2271-2279
    • /
    • 2007
  • In this paper, we introduce the notion of certificate-based encryption in multi-receiver environment, which avoids the inherent key escrow problem while preserving the implicit certification in identity-based encryption. We also construct a highly efficient certificate-based encryption scheme for multi-receiver environment, which eliminates pairing computation to encrypt a message for multiple receivers. Moreover, the proposed scheme only needs one pairing computation for decrypting the ciphertext. We compare our scheme with the most efficient identity-based encryption scheme for multi-receiver environment proposed by Baek et.al.[1] in terms of the computational point of view, and show that our scheme provides better efficiency than Baek's scheme. Finally, we discuss how to properly transform our scheme into a new public key broadcast encryption scheme based on subset-cover framework.

Security of two public key schemes with implicit certifications (함축적인 인증을 제공하는 두 가지 공개키 암호 알고리즘의 안전성)

  • Park, Je-Hong;Lee, Dong-Hoon;Park, Sang-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.3-10
    • /
    • 2007
  • In this paper, we show that the status certificate-based encryption(SCBE) scheme proposed at ICISC 2004 and the certificateless signature(CLS) scheme proposed at EUC workshops 2006 are insecure. Both schemes are claimed that an adversary has no advantage if it controls only one of two participants making a cryptographic key such as a decryption key in SCBE or a signing key in CLS. But we will show that an adversary considered in the security model of each scheme can generate a valid cryptographic key by replacing the public key of a user.