• Title/Summary/Keyword: in vitro blood compatibility

Search Result 8, Processing Time 0.021 seconds

Blood Compatibility of Artificial Blood-Contacting Surface Seeded with Cultured Bovine Endothelial Cells (소폐동맥 내피세포를 이용한 인조혈액접촉표면의 혈액 접합성)

  • 김원곤;곽영태;유세영
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.80-85
    • /
    • 1993
  • Synthetic and biosynthetic vascular grafts of small diameter have long been considered to be prone to thrombosis, ultimately leading to the complete graft occlusion. Endothelial cell seeding onto synthetic blood-contacting surfaces has been suggested to be an ideal means to solve this problem. This study described a culture method of bovine endothelial cells and evaluated blood-compatibility and seeding efficiency of cultured endothelial cells. Bovine pulmonary artery endothelial cells were harvested enzymatically and grown to confluence on polystyrene culture flask surfaces using established techniques. The identification of endothelial cells was made through the demonstration of expression of factor VIII R:Ag by immunofluorescent technique. To quantitate the effect of improvement in blood-compatibility of viable endothelial cells, endothelial monolayers were exposed to blood containing $\^$111/In-oxine labeled platelets. Viable endothelial monolayers retained less labeled platelets than control surfaces. The Indium-labeled endothelial cells were seeded onto three different blood-contacting surfaces of Dacron vascular graft immobilized in specially equipped wells and incubated for specific time intervals (t=15, 30, 60, 120 minutes). Longer incubation times showed improved cell adherence in collagen-coated and fibrin-coated Dacron vascular graft groups. However in untreated Dacron grafts, no direct relationship was observed between incubation time and endothelial cell seeding efficiency. This may be due to leakage of endothelial cells through porosity of Dacron grafts in this in-vitro experimental condition.

  • PDF

The Synthesis and Evaluation of Pendant Oligosaccharide-Lipid Side Chain Copolymer

  • Nam, Hye-Sung;Kim, Hyun-Joo;Nam, Kwang-Woo;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • In this research, the in vitro anti-thrombogenecity of artificial materials was evaluated using hydrophilic/hydrophobic copolymers containing oiligosaccharide as hydrophilic moiety and phospholipid as hydrophobic moiety respectively. N-(p-vinylbenzyl)-[O-$\alpha$-D-glucopyranosyl-(1longrightarrow4)]$_{n-1}$-D-glucoamide(VM7A) was (VM7 A) was adopted as hydrophilic oligosaccharide and 2-acryloxybutyl-2-(triethylammonium)ethyl phosphoric acid (HBA-choline) was adopted as hydrophobic phospholipid. Copolymers having various monomer feeding molar ratios were synthesized through radical polymerization. The synthesized copolymers were identified using FT-IR, $^1$H-NMR, XPS, and DSC. The surface energy of the copolymers were evaluated by dynamic contact angle (DCA) method and checked different roles of VM7A as hydrophilic moiety and HBA-choline as hydrophobic moiety on surface. The surface morphological differences between hydrated and unhydrated surfaces of copolymers were observed and evaluated using Am. The platelets were separated from canine whole blood by centrifugation and adopted to the anti-thromobogenecity test of the copolymers. From the results, we find out that as VM7A ratio increases, so did anti-thrombogenecity. Such results show the possibility of using these copolymers as blood compatible materials in living body.y.

Enhanced Blood Compatibility of PEO-Grafted and Sulfonated Polyurethanes (폴리에틸렌옥사이드 및 설폰산이 결합되어 혈액적합성이 개선된 개질 폴리우레탄)

  • Han, D.K.;Jeong, S.Y.;Ahn, K.D.;Kim, Y.H.;Kim, U.Y.;Cho, H.I.;Min, B.G.;Choi, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.5-6
    • /
    • 1989
  • Polyurethane surface was chemically modified to have different hydrophilic polyethyleneoxide(PEO)/hydrophobic dodecanediol(DDO) groups and negatively charged sulfonate group to investigate the effect to the antithrombogenicity. The hydrophilicity of the surface was significantly increased after PEO grafting or sulfonation. Lowering in-vitro platelet adhesion led to a prologation in the ex-vivo occlusion time. Especially, the sulfonated PU-PEO surface showed most enhanced blood compatibility due to the synergistic effects of PEO and $SO_3$ groups.

  • PDF

Experimental Assessment of Hemostatic Agents: Comparison with New Developed Chitosan-Based Material (신개발 키토산 제재의 지혈 효과에 대한 비교)

  • Cho, Young-Kyoo;Lee, Sang-Yun;Kim, Tae-Jung;Lim, Hyun-Ju;Oh, Eun-Jung;Lee, Soo-Bok;Choi, Kang-Young;Yang, Jung-Dug;Cho, Byung-Chae;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.369-375
    • /
    • 2011
  • Purpose: Many hemostatic agents and dressings have been tested with variable degree of success. Chitosan has a positive charge, it attracts red blood cells, which have a negative charge. Our goal is to test the efficacy of new developed chitosan-based hemostatic materials in providing durable hemostasis in a high-flow arterial wound model. Methods: We compared each group with SD rats motality tests and in vitro blood compatibility test by blood clotting index (BCI). We devided the SD rats into 6 groups (N =15) by type of hemostatic agents. A: 100% nonwoven chitosan (degree of the deacetylation: 90%). B: 50% N-acetylation on nonwoven of chitosan gel (degree of the deacetylation: 50%). C: 60% N-acetylation on nonwoven of chitosan ge (degree of the deacetylation: 40%)l. D: Cutanplast$^{(R)}$. E: HemCon$^{(R)}$ F: Gauze. In vivo test, a proximal arterial injury was created in unilateral femoral arteries of 90 anesthetized SD rats. Each materials was made same size and thickness then applied to the injury site for 3 minutes. In vitro test, we compared each group with BCI in human blood. Results: In vivo test, group A showed lower motality rate of 46% than any other groups, Group B and C showed lower motality rate of 60% than group D and E's motality rate of 66%. In vitro test, BCI of group A ($30.6{\pm}1.2$) and B ($29.3{\pm}1.0$) were showed nearly about group D ($29.1{\pm}1.8$) and E ($27.4{\pm}1.6$). Group C ($37.1{\pm}2.0$) showed higher BCI than group A and B, it means group C decreased blood clotting. Conclusion: In conclusion, this study suggests a newly developed chitosan-based hemostatic materials induced durable hemostasis and increased blood clotting, and are considered as effective biologic hemostatic agents.

A Study on the Evaluation of Hydrodynamic Performance of Trileaflet Prosthetic Heart Valves (삼엽식 인공판막의 수력학적 성능평가에 관한 연구)

  • 김혁필;이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.147-156
    • /
    • 1997
  • Various prosthetic heart valves have been developed and used clinically, but they have problems, such as thrombogenecity, hemoltsis, high cost and low durability. New types of trileaflet polymer heart valves have been developed in order to use them as inlet and outlet valves in a ventricular assist device. The aim of this study is to determine the hydrodynamic effectiveness of the newly designed trileaflet polymer valves and their feasibility for temporary use in the blood pumps. Trileaflet polymer valves are made of polyurethane, because of its good blood compatibility, high tonsil strength and good resistance to fatigue. An in vitro experimental investigation was perf'ormed in order to ev91ua1e hydrodynamic performance of the trileaflet polymer valves having different design and fabrication tech- niques. The St. Jude Medical valve (SJMV) and floating-type monoleaflet polymer valve (MLPV) were also tested The pressure drop across the valve, leakage volume, and the flow patterns mere investigated for valves. The result of comparative tests showed that the trileaflet polymer valves had a better hydrodynamic performance than the others. TPV which has two stable membrane shape showed the lowest back flow. The pressure hops of TPVs were lower than that of MLPV, but slightly higher than SJMV. The hydrodynamic performance of valves under the pulastile flow showed the similar results as steady flow. The velocity profiles and turbulent intensities were measured at the distal sites of valves using a hot-film anemometer. Central flow was maintained in trileaflet polymer valves, and the maximum turbulent intensities were lower in TPVs comparing to MLPV.

  • PDF

A Study for Mechanical and Platelet Adhesion Properties of Fluorinated Polyurethanes (불소화된 폴리우레탄의 기계적 물성과 혈소판 점착특성에 관한 연구)

  • 김형중
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2001
  • The mechanical and the platelet adhesion properties of the fluorinated polyurethane elastomers synthesized with a perfluorinated polyether diol (Fomblin ZDOL$ZDOL^{(R)}$) and 4,4'-diphenyl methane diisocyanate (MDI) were investigated. The change of mechanical properties with the Fomblin content and the type of the polyether diol was investigated by applying a designed technique using in vitro platelet adhesion test. As a result, the tensile properties were affected by the content and the type of nixed polyether diols. Also the platelet adhesion of polyurethane elastomers decreased with increasing the extent of fluorination in the polymer.

  • PDF

Anti-complement Effects of Anion-Substituted Poly(vinyl alcohol) Membranes

  • Ryu, Kyu-Eun;Rhim, Hyang-Shuk;Park, Chong-Won;Chun, Heung-Jae;Hong, Seung-Hwa;Kim, Young-Chai;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • In a continuation of our previous studies on blood compatibility profiles of anion-substituted poly(vinyl alcohol) (PVA) membranes, in which hydroxyl groups have been replaced with carboxymethyl (C-PVA) and sulfonyl groups (S-PVA), we have studied the activation of complement components and the changes in white cell and platelet count in vitro and compared them with those of unmodified PVA, Cuprophane, and low-density polyethylene. Complement activation of fluid phase components, C3a, Bb, iC3b, and SC5b-9, and of bound phases, C3c, C3d, and SC5b-9, were assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblot, respectively. The changes in the number of white cells and platelets following complement activation were counted using a Coulter counter. C-PVA and S-PVA activated C3 to a lesser extent than did PVA, which we attribute to the diminished level of surface nucleophiles of the samples. In addition, C- and S-PVA exhibit increased inhibition of Bb production, resulting in a decrease in the extent of C5 activation. Consequently, because of the reduced activation of C3 and C5, C- and S-PVA samples cause marked decreases in the SC5b-9 levels in plasma. We also found that the negatively charged sulfonate and carboxylate groups of the samples cause a greater extent of adsorbtion of the positively charged anaphylatoxins, C3a and C5a, because of strong electrostatic attraction, which in turn provides an inhibition of chemotaxis and activation of leukocytes. The ability to inhibit complement production, together with the binding ability of anaphylatoxins of the C- and S-PVA samples, leads to a prominent decrease in lysis of leukocytes as well as activation of platelets.

Evaluation of Biocompatibility of Extracorporeal Circuit - Development of a Quantification Technique using in-vivo Injection of Tc99m Radioactive Platelets - (체외순환도관의 혈액적합성 평가 - 방사선 동위원소(Tc99m) 활성화 혈소판의 생체 내 주입을 이용한 정량분석법의 개발 -)

  • Lee, Sung-Ho;Sun, Kyung;Choi, Jai-Geol;Son, Ho-Sung;Jung, Jae-Seung;Ahn, Sang-Soo;Oh, Hye-Jung;Lee, Whan-Sung;Lee, Hye-Won;Kim, Kwang-Taik;Jeong, Yoon-Seop;Kim, Young-Ha;Kim, Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.35 no.3
    • /
    • pp.171-176
    • /
    • 2002
  • Background: Blood-foreign interaction cause activation of coagulation and inflammatory process that may lead to multiorgan dysfunction and determine the surgical outcomes. Of the methods for assessing the biocompatibility, the platelet adhesion study is considered as the most valuable evaluation step in blood-foreign interaction. As the most studies have used in-vitro or ex-vivo conditions, we have developed a technique of quantification for platelet adhesion on the blood contact surface by using in-vivo injection of radioactive platelets. Material and Method: A coupled bypass circuit was designed to connect the proximal and descending thoracic aorta in 6 piglets(20∼25 Kg). One side of the circuit tube was consisted of a heparin coated PVC tube(10mm in ID, n=6, Experimental group), and the other, a non-heparin coated PVC tube(10mm in ID, n=6, Control group). After cannulation, the blood was circulated through the circuit for 2 hours. Platelet concentrate was prepared from homologous pig blood 24 hours before the experiment. The platelet concentrate was incubated with Tc-99m-HMPAO for 30 min and then centrifuged for 10 min. The supernatant was discarded and the radio-labeling efficacy was measured. The radio-labeled platelet concentrate was mixed with the autologous plasma to make the volume 5 ml, and the mixture was injected intravenously into the experimental animal. After 2 hour circulation, 5 pieces of the specimen(10mm in length each) were obtained from each PVC tube. The radioisotopes were counted with a gamma counter(Cobra ll, Packard, USA), and the ratio of radioisotope count was compared between the control and experimental group. Result: The radioisotope count number was 537.3221.1 Ci/min in the control group and 311.1 184.5 Ci/min in the experimental group(p=0.0104). The ratio between the groups was 1 to 0.58 (p=0.004). Conclusion: In vivo quantification using technetium-99m-HMPAO labeled platelets is simple and reproducible in evaluating platelet adhesion on a foreign surface. We suggest this technique to be a useful tool for blood compatibility test.