• Title/Summary/Keyword: induced systemic tolerance

Search Result 21, Processing Time 0.029 seconds

A Trifloxystrobin Fungicide Induces Systemic Tolerance to Abiotic Stresses

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Lee, Seung-Hwan;Kim, In-Seon;Kim, Chul-Hong;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • Trifloxystrobin is a strobilurin fungicide, which possesses broad spectrum control against fungal plant diseases. We demonstrated that pre-treating red pepper plants with trifloxystrobin resulted in increased plant growth and leaf chlorophyll content compared with those in control plants. Relative water content of the leaves and the survival rate of intact plants indicated that plants acquired systemic tolerance to drought stress following trifloxystrobin pre-treatment. The recovery rate by rehydration in the drought treated plant was better in those pre-treated with trifloxystrobin than that in water treated plants. Induced drought tolerance activity by trifloxystrobin was sustained for 25 days after initial application. The trifloxystrobin treated red pepper plants also had induced systemic tolerance to other abiotic stresses, such as frost, cold, and high temperature stresses. These findings suggest that applying the chemical fungicide trifloxystrobin induced systemic tolerance to certain abiotic stresses in red pepper plants.

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

  • Cho, Song-Mi;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • 2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.

Induced Systemic Drought and Salt Tolerance by Pseudomonas chlororaphis O6 Root Colonization is Mediated by ABA-independent Stomatal Closure

  • Cho, Song-Mi;Kang, Beom-Ryong;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.202-206
    • /
    • 2012
  • Root colonization by the rhizobacterium Pseudomonas chlororaphis O6 in Arabidopsis thaliana Col-0 plants resulted in induced tolerance to drought and salinity caused by halide salt-generated ionic stress but not by osmotic stress caused by sorbitol. Stomatal apertures decreased following root colonization by P. chlororaphis O6 in both wild-type and ABA-insensitive Arabidopsis mutant plants. These results suggest that an ABA-independent stomatal closure mechanism in the guard cells of P. chlororaphis O6-colonized plants could be a key phenotype for induced systemic tolerance to drought and salt stress.

Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

  • Cho, Song-Mi;Kang, Beom Ryong;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria (근권미생물에 의한 식물의 생물·환경적 복합 스트레스 내성 유도)

  • Yoo, Sung-Je;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.99-113
    • /
    • 2017
  • Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack) and abiotic stress (salt, high/low temperature, drought). Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR) to biotic stress or induced systemic tolerance (IST) to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses ($biotic{\times}abiotic$). We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

Induced Drought Tolerance by the Insecticide Imidacloprid in Plant (살충제 이미다클로프리드에 의한 식물 가뭄 내성 유도)

  • Han, Song-Hee;Kim, Chul-Hong;Lee, Jang-Hoon;Kim, In-Seon;Kim, Young-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.159-164
    • /
    • 2010
  • Imidacloprid is a systemic insecticide which has been used widely in various crops to control insects. In the present study, we demonstrated that pre-treatment of imidacloprid significantly induced tolerance to drought in plant. Relative water content, chlorophyll levels, and recovery rate upon rehydration after drought stress in tobacco plants pre-treated with imidacloprid were higher levels than the control plants. Induced drought tolerance by imidacloprid treatments in red pepper was also demonstrated by measurement of recovery rate and fresh weight upon drought stress. Taken together, our results suggest that imidacloprid, in addition to exerting direct insecticidal activity, may also protect plants by induced tolerance to drought in plant.

Galactinol is Involved in Induced Systemic Resistance against Bacterial Infection and Environmental Stresses

  • Cho, Song-Mi;Kim, Su-Hyun;Kim, Young-Cheol;Yang, Kwang-Yeol;Kim, Kwang-Sang;Choi, Yong-Soo;Cho, Baik-Ho
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • We previously demonstrated that root colonization of the rhizobacterium, Pseudomonas chlororaphis O6, induced expression of a galactinol synthase gene (CsGolS1), and resulting galactinol conferred induced systemic resistance (ISR) against fungal and bacterial pathogens in cucumber leaves. To examine the role of galactinol on ISR, drought or high salt stress, we obtained T-DNA insertion Arabidopsis mutants at the AtGolS1 gene, an ortholog of the CsGolS1 gene. The T-DNA insertion mutant compromised resistance induced by the O6 colonization against Erwinia carotovora. Pharmaceutical application of 0.5 - 5 mM galactinol on roots was sufficient to elicit ISR in wild-type Arabidopsis against infection with E. carotovora. The involvement of jasmonic acid (JA) signaling on the ISR was validated to detect increased expression of the indicator gene PDF1.2. The T-DNA insertion mutant also compromised tolerance by increasing galactinol content in the O6-colonized plant against drought or high salt stresses. Taken together, our results indicate that primed expression of the galactinol synthase gene AtGolS1in the O6-colonized plants can play a critical role in the ISR against infection with E. carotovora, and in the tolerance to drought or high salt stresses.

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In;Jang, Hee-Seong;Park, Kwon-Moo
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.629-634
    • /
    • 2010
  • Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

Identification and Transcriptional Analysis of Priming Genes in Arabidopsis thaliana Induced by Root Colonization with Pseudomonas chlororaphis O6

  • Cho, Song-Mi;Park, Ju-Yeon;Han, Song-Hee;Anderson, Anne J.;Yang, Kwang-Yeol;Gardener, Brian Mcspadden;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Root colonization of Arabidopsis thaliana with Pseudomonas chlororaphis O6 induces systemic tolerance against diverse pathogens, as well as drought and salt stresses. In this study, we demonstrated that 11 genes in the leaves were up-regulated, and 5 genes were down-regulated as the result of three- to five-days root colonization by P. chlororaphis O6. The identified priming genes were involved in cell signaling, transcription, protein synthesis, and degradation. In addition, expression of selected priming genes were induced in P. chlororaphis O6-colonized plants subjected to water withholding. Genes encoding defense proteins in signaling pathways regulated by jasmonic acid and ethylene, such as VSP1 and PDF1.2, were additional genes with enhanced expression in the P. chlororaphis O6-colonized plants. This study indicated that the expression of priming genes, as well as genes involved in jasmonic acid- and ethylene-regulated genes may play an important role in the systemic induction of both abiotic and biotic stress due to root colonization by P. chlororaphis O6.

Induction of Oral Tolerance to Japanese Cedar Pollen

  • Kim, Joung-Hoon;Mun, Yeun-Ja;Ahn, Seong-Hun;Park, Joung-Suk;Woo, Won-Hong
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.557-563
    • /
    • 2001
  • Oral tolerance is thought to play a role in preventing allergic responses and immune-mediated diseases. An improved mouse model of the oral tolerance to Japanese cedar pollen (JCP) as antigen was developed in order to detect induction of the tolerance, and the immunological characteristics of this model were also elucidated. Oral tolerance was induced by C3H/ HeN mice given an oral administration of 10 mg JCP 7 days before immunization with an i.p. injection of 0.1 mg JCP in complete Freunds adjuvant (CFA). The effects of oral JCP on systemic immunity were assessed by enzyme-linked immunosorbent assay (ELISA) of immunoglobulin (Ig) levels in serum collected on day 7 or 14 after immunization. Oral tolerance to JCP was adequately induced on day 7 after immunization and was more effective in C3H/HeN mice than in BALB/c mice. The tolerance was primarily concerned with the decreased serum levels of antigen-specific IgG. In these mice, oral administration of JCP also suppressed various immune responses to the antigen including delayed-type hypersensitivity (DTH), total Igl level and anti-JCP IgGl level. The suppression of these immune responses by the oral antigen was associated with a significant reduction in interleukin-4 (IL-4) production. These findings therefore indicate that this C3H/HeN mice model has potential use in detecting the induction of oral tolerance by JCP and suggest that this tolerance model may be effective in the treatment and prevention of allergic responses caused by the antigen.

  • PDF