• Title/Summary/Keyword: induction arrow

Search Result 6, Processing Time 0.022 seconds

The 3-D Geomagnetic Induction Modeling and the Application of Difference Arrow Considering with Conductivity Structures on the Korean Peninsula (한반도 내의 전도성 구조를 고려한 3파원 지자기 모델링 및 차이 지시자의 적용)

  • Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.440-448
    • /
    • 2003
  • We have performed 3-D geomagnetic induction Modeling considering with anomalous conductive structures to interpret the conductive anomaly proposed by previous studies on the Korean Peninsula. The results of modeling coincide well with the observed induction arrow. we confirm the fact that Imjin River Belt and Ogcheon Belt presumed in the model are reasonable. In the western-middle area of the peninsula (YIN, ICHN) the induction arrows seem to reflect the existence for the Imjin River Belt and the induction arrows in western-south area (HNS, CHY, DZN, MWN) is likely to reflect the effect of the Ogcheon Belt. The difference arrows, calculated by subtracting the sea effect from observed induction arrow in the western area of the peninsula at the period of 60-minutes, show little difference with the observed induction arrows. Especially, the difference arrows in YIN, ICHN also show a similar pattern to those at the periods longer than 10-minutes. These results strongly suggest that the Imjin River Belt and the Ogcheon Belt extend down to the deep part of the crust in spite of the limitation of our model.

Geomagnetic Depth Sounding to Investigate the Trend of Electrical Conductivity in and around the Korean Peninsula (지자기 수직 탐사에 의한 한반도 주변의 전기전도도 구조)

  • 오석훈;양준모;이덕기;남재철
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.437-444
    • /
    • 2002
  • Geomagnetic depth sounding (GDS) was performed to analyze the characteristics of deep resistivity structure in and around the Korean Peninsula. The data that have 0.01 nT precision were collected from 5 geomagnetic observatories and measured every one or five second. In this study, amount of 16 days of geomagnetic data were used for analyzing. Generally the sea affects the GDS data seriously due to its high conductivity. However, though the Korean peninsula is surrounded by seas in three sides, the results given by induction arrow strongly show that the trend of electrical conductivity at neighborhood of the Korean Peninsula is reigned by some geological features. Also it is believed that observation in Jeju island is related with the electrical structure around the East China Sea.

A study on the characteristics of difference arrow using three-dimensional MT(Magneto-Telluric) modeling (3차원 전도체의 공간적 위치 및 크기에 따른 차이 지시자의 특성 연구)

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2002
  • The three-dimensional MT(Magneto-Telluric) modeling is performed to examine the validity of difference arrow of GDS(Geomagnetic Depth Sounding) survey, In this paper, we investigate the validity of the difference arrow on three configurations of conductors; which is located 1) at surface, 2) at the deep part and 3) vertically extended f개m surface to the deep part, respectively, For conductors located at surface, the validity of difference arrows is certified in our numerical model when long periods over 40 minutes are used or the distance between sea and conductor is over 150 km. However, for conductors located at the deep part, the validity of difference arrow is dependent on the size of conductors. Further, if the size of conductor is adequately larger than that of our model, we recognize the possibility that the mutual coupling of them influences up to longer periods, Moreover, in case of conductors which is vertically extended from surface to the deer part, the mutual coupling of them is reinforced for all periods, especially for longer periods, so that the validity of difference arrow is considerably in doubt. Therefore, to remove the known conductor effect such as the sea effect from the observed induction arrow, the mutual coupling between them must be examined. The difference arrow that certifies the validity in this way can only provide the Subsurface information based on physical supports.

  • PDF

A study on the Difference Arrow of GDS (Geomagnetic Depth Sounding) Survey using 2-D MT (Magneto-Telluric) Modeling (2차원 MT(Magneto-Telluric)모델링을 이용한 지자기 수직탐사(Geomagnetic Depth Sounding)에서의 차이 지시자의 연구)

  • 양준모;오석훈;이덕기;윤용훈
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • Two-dimensional MT (Magneto-Telluric) modeling is performed to verify the validity of difference arrow for GDS(Geomagnetic Depth Sounding) survey. The electromagnetic mutual coupling between the sea and in-land conductor is used as a criterion that judges the validity of difference arrow. In this study, the mutual coupling between them is examined according to the spatial distance between them and the period of magnetic variations. The difference arrow is valid for conductors located at surface which are far from the sea or when the long period is used, but the mutual coupling is weak for buried conductor in all the periods. However, when a conductor extends vertically down to the deep part, the validity of difference arrow is in doubt, since the strong mutual coupling influences up to the long period. Therefore, to remove the known conductor effect such as sea effect from the observed induction arrow, the mutual coupling between them must be examined and the caution must be exercised in interpreting the resultant difference arrow if mutual coupling between them is strong.

GOODSTEIN'S GENERALIZED THEOREM: FROM ROOTED TREE REPRESENTATIONS TO THE HYDRA GAME

  • LEONARDIS, A.;D'ATRI, G.;ZANARDO, E.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.883-896
    • /
    • 2022
  • A hereditary base-b representation, used in the celebrated Goodstein's theorem, can easily be converted into a labeled rooted tree. In this way it is possible to give a more elementary geometric proof of the aforementioned theorem and to establish a more general version, geometrically proved. This view is very useful for better understanding the underlying logical problems and the need to use transfinite induction in the proof. Similar problems will then be considered, such as the so-called "hydra game".