• Title/Summary/Keyword: induction motor drive

Search Result 675, Processing Time 0.027 seconds

Stability Improvement of a V/f Controlled Induction Motor Drive System using a Dynamic Current Compensator (다이나믹 전류보상기를 이용한 V/f 제어 유도전동기 드라이브 시스템의 안정도 향상)

  • 정강률
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.402-408
    • /
    • 2004
  • This paper proposes the novel V/f control method to improve the stability of a V/f controlled induction motor drive system. The conventional V/f control method used in the proposed V/f control method is a vector-based method that is slightly different from the existing conventional V/f control method. The proposed control method uses a dynamic current compensator to improve the stability of a V/f controlled induction motor drive system. This proposed method is easy to implement and completely eliminates the motor oscillation phenomenon causing the instability of a V/f controlled induction motor drive system, especially when the system is driven near the resonant frequency in steady-state with light load. Additionally, this paper analyzes theoretically the instability of a V/f controlled induction motor drive system and shows the validity of the Proposed V/f control method through simulation and experimental results.

Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선)

  • 김상균;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

High Performance Control of Induction Motor Drive with AFLC Controller (AFLC 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.216-218
    • /
    • 2006
  • The paper is proposed high performance control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper is proposed speed control of induction motor using AFLC and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and ANN controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.

  • PDF

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Low Cost Motor Drive Technologies for ASEAN Electric Scooter

  • Tuan, Vu Tran;Kreuawan, Sangkla;Somsiri, Pakasit;Huy, Phuong Nguyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1578-1585
    • /
    • 2018
  • This work investigates two different motor drive technologies, switched reluctance motor (SRM) and induction motor (IM). They are designed optimally to meet the desired performances for electric scooters. The comparison of both motors is described in terms of performances and material cost. With the similar constraint, induction motor performs slightly better than switched reluctance motor. But this must be traded-off with higher weight and cost. Both drive systems are, however, suitable for electric scooter application. Finally, the range simulations are conducted on a European urban driving cycle, ECE15 driving cycle and a more realistic cycle, Bangkok driving cycle. The e-scooter ranges are varied from 36 to 109 km depending on driving cycle, motor technology and number of passengers.

A study on the Trans-vector control of the 3.phi. Induction motor drive (3상교류 전동기의 트랜스벡터제어에 관한 연구)

  • 노창주;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.64-71
    • /
    • 1984
  • In this paper, the fundemental equation on the Trans-vector control of 3.phi. Induction motor drive and the new equivalent circuit to be adapted for this equation, have been obtained, and control drives system to be coincide with this equation is made. Therefore, it has been obtained that control scheme can always be used motor drive. 3.phi. Induction motor drive has been got the dynamic behavior the same as that of DC motor drive. The drive dynamic response is very rapid because of Trans-vector control on the I_1$ (primary current) and .${\omega}_1$ (frequency of primary current) of the Induation mechine. This paper indicates that a practicality of the drive control system and the rationalty of the theory have been identified with the experimental results. The effect of parameter variations on the drive dynamic response can be evaluated from these results.

  • PDF

Parameter Identification of an Induction Motor Drive with Magnetic Saturation for Electric Vehicle

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.418-423
    • /
    • 2011
  • This paper presents a simulation model and a parameter identification scheme of an induction motor drive for electric vehicle. The induction motor in automotive applications should operate in very high efficiency and achieve the maximum-torque-per-ampere (MTPA) feature even with saturated magnetic flux under very high torque. The indirect vector control which is typically adopted in traction drive system requires precise information of motor parameters, particularly rotor time constants. This work models an induction motor considering magnetic saturation and proposes an empirical identification method using the current controller in the synchronous reference frame. The proposed method is applied to a 22kW-rated induction motor for electric vehicle.

Maximum Efficiency Drive of Vector-Controlled Induction Motors (벡터제어 유도전동기의 최대효율 운전)

  • Yoon, Duck-Yong;Choe, Gyu-Ha;Hong, Soon-Chan;Baek, Soo-Hyun;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF

Design of Fuzzy Controller of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기 드라이브의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.111-119
    • /
    • 2002
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.