• Title/Summary/Keyword: industry life cycle

Search Result 548, Processing Time 0.065 seconds

A Study on the Numerical Approach for Industrial Life Cycle: Empirical Evidence from Korea

  • LEE, Kangsun;CHOI, Kyujin;CHO, Daemyeong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.667-678
    • /
    • 2021
  • The industrial life cycle theory was extended to the product life cycle theory and the corporate life cycle theory, but a conceptual life cycle was presented, and quantitative empirical evidence for this was insufficient. It is intended to improve appropriate resource planning and resource allocation by quantitatively predicting the industrial cycle and its position (age) in the cycle. Human resources, tangible assets, and industrial output analysis were conducted based on 28 years of actual data of 39 industries in Korea by applying the Gompertz model, which is a population ecology prediction model. By predicting with the Gompertz model, the coefficient of determination R2 value was 97% or more, confirming the high suitability with the actual cumulative sales value of the industry. A numerical model for calculating the life cycle of each industry, calculating the saturation of input resources for each industry, and diagnosing the financial stability of the industry was presented. These results will contribute to the decision-making of industrial policy officers for budget planning appropriately for each stage of industry development. Future research will apply the numerical model of this study to foreign national industries, complete an inter-industry convergence diagnostic model (e.g. ease of convergence, suitability of convergence, etc.) for renewal of fading industries.

Railway industry and Life Cycle Assessment(LCA) (철도산업과 전과정평가(LCA))

  • Jeong In-Tae;Yang Yun-Hee;Lee Kun-Mo;Kim Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.1028-1032
    • /
    • 2005
  • Life cycle assessment(LCA) has been developed from the concept of life cycle thinking. Life cycle thinking implies that everyone in the whole chain of a product's life cycle, from cradle to grave, has a responsibility and a role to play, taking into account all the relevant external effects. LCA is an analytical tool for identifying environmental loads and assessing the environmental impact in the whole chain of a product's life cycle. In Europe and Japan, LCA and ecodesign study for railway industry have been actively carried out recently. However, LCA for railway industry in domestic is still infant. LCA is standardized in International Organization of Standardization(ISO), base on the ISO 14040 standards, 307 life cycle inventory(LCI) database for infrastructure and base materials have been established in total since 1999. Some of LCI database can use in performing LCA for trains and railway infrastructure, but still not enough to derive accurate LCA result. Therefore, railway oriented LCA methodology and LCI DB are needed to be developed.

  • PDF

A Study on the Revitalization Pattern of Industry in Decline: Focusing on Korean Shoe Industry

  • LEE, Kang-Sun;CHOI, Kyu-Jin;KANG, Sung-Wook;CHO, Dae-Myeong
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • Purpose - This study aims to study the activation pattern of declining industries by applying the Gompertz growth model using available resources based on the theory of industrial life cycle, classifying declining industries among Korean manufacturing industries, and identifying resource input characteristics. Research design and methodology - This study was conducted by combining the Gompertz growth model that predicts the limit of output based on available resources under the industrial life cycle theory. Using Gompertz model, this study analyzed the life cycle of 39 Korean manufacturing industries from the perspective of domestic production, number of employees, and fixed assets Results - According to a life cycle analysis of 39 manufacturing industries in Korea, the computer, textile, and shoe industries were classified as declining industries. Among them, research on resource input characteristics on the shoe industry showed that domestic production and the number of employees decreased, while the proportion of domestic R&D personnel and the number of research departments gradually increased. Conclusion - Among the declining industries in Korea, the shoe industry is considered to revitalize the industry, that is, to extend the life of the declining industry by offshoring its production site and improving constitution with a "R&D center for global" support.

Low Carbon operation study through comparing GHG contribution of each stages of railway vehicle (철도차량 전과정 단계별 온실가스 발생량 비교를 통한 저탄소 운영방안 연구)

  • Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.183-186
    • /
    • 2010
  • Advanced Railway countries are developing technologies of production and management for low-carbon and green growth of their railway industry to hold a dominant position under post-Tokyo protocol regime through integrated approach which uses environmental quantitative analysis of train life cycle by using LCA(Life Cycle Assessment). On the contrary, Korea railroad industry attempts to make an environmental improvement only for using regenerative energy and improvement in operating energy consumption through adapting reduction weight of material technology and etc. without systematic environmental analysis approaches such as comparing and analyzing energy consumption as well as GHG emission in each life cycle stages of train. Therefore, In this paper, low-carbon management and comprehensive environmental improvement for sustainable development of Korea railway industry through analyzing the result of life cycle analysis in abroad are suggested.

  • PDF

Effective Implementation of Quality Management System through Life Cycle Model and Measurements of TL 9000 (TL 9000의 성과지표와 수명주기모형을 통한 효과적인 품질경영시스템의 적용방안)

  • 서창적;김정래
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.4
    • /
    • pp.1-17
    • /
    • 2001
  • The characteristics of Telecommunication Industry encompass not only hardware and software but also the service aspect of them. One way to improve the industry up to the international level in terms of hardware and software as well as service aspect is to comply with tile TL 9000 standard, which was established by QUEST Forum, the group consisted of U.S. communication industry, based on the ISO 9000 Quality Management System. In this study, design, establishment, implementation, maintenance and improvement of quality system for domestic telecommunication industry are thoroughly investigated based on TL 9000 standard, with its LCM(Life Cycle Model) model and measurements. Also, Process Approach is suggested to help the industry realize the system to meet its specific needs. In addition, specific examples with the successful certification to TL 9000 standard are presented.

  • PDF

Environmental Impacts Assessment of the Wheat Flour Production Process Using the Life Cycle Assessment Method (LCA 기법을 이용한 소맥분 생산 공정의 환경 영향 평가)

  • Chu, Duk-Sung;Kwon, Hyuk-Ku;Kim, Jong-Geu;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • The life cycle assessment method for environmental impact assessment was used, in this study, to assess the production process of wheat flour which is the most important material in the food industry. Environmental impact assessments were compared between that of the Ministry of Environment, Republic of Korea (method I) with that of the Ministry of Commerce, Industry and Energy (method II). Life cycle inventories (LCI) was performed using internal and external databases and the production statistics database of company S. The procedure of life cycle impact assessment (LCIA) was followed in terms of classification, characterization, normalization and weighting to identify the key issues. The impact categories of method I were divided into 8 categories with consideration of : abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification and eutrophication. The impact categories of method II were divided into 10 categories with consideration of: abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification, eutrophication, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity.

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Case Study on the Life Cycle Assessment of the Packaged Bean-curd in Food Industry (식품산업에 있어서 포장두부의 전과정평가 사례연구)

  • Hwang, Tae-Yeon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.3
    • /
    • pp.277-290
    • /
    • 2007
  • This study has been analyzed an execution example of the life cycle assessment on the packaged bean-curd of P company, the first case of the regular life cycle assessment on the processed foods in Korea and considered on the significance and directions of the life cycle assessment on the foods. It is possible to divide the potential environmental impact through the life cycle of the bean-curd into six categories and analyze the environmental impact on the production, use and disposal phases of the product. The values of each environmental impact have been quantified from the strength of the potential impact fur the corresponding category of impact. In the future, it is expected that the result of the lift cycle assessment will be increasingly used fur many areas such as Climate Change Convention and ISO22000, etc. and it is required to promote a project to make database through the assessment on the individual corps or types of businesses for it from now on.

  • PDF

A Study on the Life Cycle Energy and $CO_2$ in the Apartment Housings (공동주택의 라이프사이클 에너지와 이산화탄소 추정에 관한 연구)

  • Lee, Kang-Hee;Chae, Chang-U
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.89-96
    • /
    • 2008
  • The environment has played a key role to improve the living condition and develop the industry. In building industries, we should consider the environment and mitigate the environmental affect. For mitigating the its affect, various areas of building technology have been developed and applied into filed work. In addition, the process in applying into field requires to conduct the assessment of the environmental affect and improve its applied technology. A lot of assessment methods are proposed in evaluate the building condition such as post-occupancy evaluation, life cycle management and life cycle assessment. Among these assessment methods, life cycle assessment is effectively utilized the environmental affect in building life cycle. Therefore, this paper aimed at analyzing the energy consumption and $CO_2$ emission in building life cycle, using the life cycle assessment and application of the example in apartment housing. This study shows that the maintenance and the production of building materials stage shares most of the amount of energy consumption and $CO_2$ emission and therefore plays an important role to planning the building in terms of the life cycle. Second, the other stages brings about a very small amount. It is important to decide the building shape and contents to mitigate the environmental affect in terms of material, volume, the pattern of the energy use and others.

Development of Life Cycle Cost Estimation Software on the Aspect of Maintenance Strategies (유지보수관점에서의 수명주기비용예측 소프트웨어 개발)

  • Jun, Hyun-Kyu;Kim, Jae-Hoon;Kim, Jong-Woon;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.777-783
    • /
    • 2007
  • Life cycle costing is one of the most effective cost approaches when we choose a solution from series of alternative so the least long-term cost ownership is achieved. Life cycle costing in railway industry has been focused on the prediction of investment for railway vehicles. But in today, the life cycle cost, LCC, prediction on the aspect of operation and maintenance cost through whole life cycle is highly necessary. In this paper, we present a strategy for the development of life cycle cost estimation software on the aspect of maintenance strategies of railway vehicle. For this purpose, we suggested a structure of LCC software based on the UNIFE LCC model. And we developed a pilot version of software to evaluate the LCC model that we suggested for railway vehicle. We performed LCC analysis on the brake module of metro vehicle in case study and concluded that the software and model developed in this research could enough to support engineers in choosing better cost effective solutions from many alternatives.

  • PDF