• Title/Summary/Keyword: infrared detectors

Search Result 90, Processing Time 0.027 seconds

Fabrication of Uncooled Pyroelectric Infrared Detector using Surface M Micromachining Technology (표면 마이크로 가공기술을 이용한 비냉각 초전형 적외선 검출소자 제작)

  • 장철영;고성용;이석헌;김동진;김진섭;이재신;이정희;한석룡;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.115-118
    • /
    • 2000
  • Uncooled pyroelectric infrared detectors based on BST(B $a_{-x}$S $r_{x}$Ti $O_3$) thin films have been fabricated by RF magnetron sputtering and surface Micromachining technology. The detectors form BST thin film ferroelectric capacitors grown by RF magnetron sputtering on N/O/N(S $i_3$ $N_4$/ $SiO_2$/S $i_3$ $N_4$) membrane. The sputtered BST thin film exhibits highly c-axis oriented crystal structure that no poling treatment for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. surface-Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency Gold-black is evaporated on top of the sensing elements used the thermal evaporator. fabricated uncooled pyroelectric infrared detectors is highly output voltage at the low temperature(1$^{\circ}C$).).).

  • PDF

Substrate Effects on the Response of PZT Infrared Detectors (상이한 기판조건에 따른 PZT 적외선 감지소자의 성능 변화)

  • Go, Jong-Su;Gwak, Byeong-Man;Liu, Weiguo;Zhu, Weiguang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.428-435
    • /
    • 2002
  • Pyroelectric $Pb(Zr_{0.3}Ti_{0.7})O_3$ (PZT30/70) thin film IR detectors has been fabricated and characterised. The PZT30/70 thin film was deposited onto $Pt/Ti/Si_3N_4/SiO_2/Si$ substrate by the sol-gel process. Four different substrate conditions were studied for their effects on the pyroelectric responses of the IR detectors. The substrate conditions were the combinations of the Si etching and the Pt/Ti patterning. In the Si etched substrate, the $Si_3N_4/SiO_2$ composite layer was used as silicon etch-stop, and was used as the membrane to support the PZT pyroelectric film element as well. The measured pyroelectric current and voltage responses of detectors fabricated on the micro-machined thin $Si_3N_4/SiO_2$ membrane were two orders higher than those of the detectors on the bulk-silicon. For detectors on the membrane substrate, the Pt/Ti patterned detectors showed a 2-times higher pyroelectric response than that of not-patterned detectors. On the other hand, the pyroelectric response of the detectors on the not-etched Si substrate was almost the same, regardless of the Pt/Ti patterning. It was also found that the rise time strongly depended on the substrate thickness: the thicker the substrate was, the longer the rise-time.

Improving Sensitivity of the Pyroelectric Infrared Flame Detector (초전형 적외선식 불꽃감지기의 감도특성 개선)

  • Song, Hyun Seon;Lee, Yeu Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.77-84
    • /
    • 2015
  • PZT ceramics, usually used pyroelectric materials exhibited a relatively highly Curie temperture(Tc) of $250-450^{\circ}C$ and permittivity constant of 500-1600. In this paper, the pyroelectric infrared detectors are applied two different types of pyroelectric materials, that is tetragonal crystal of ferroelectric $PbTiO_3$ and rhombohedral crystal of $Pb(Zr,Ti)O_3$. PZT ceramics shows not only highly Curie temperture but also excellent pyro and piezoelectric properties at the Zr/Ti(=52/48) ratio. Therefor in this paper, the pyroelectric infrared detectors are applied PZT ceramics, and obtained sensitive sensing characteristics by expriment case studies.

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

UV/IR flame detector using Microprocessor (마이크로프로세서를 사용한 UV/IR 불곶 감지기)

  • 박성진;임병현;임종연;김명원;윤길호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults. filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

EVALUATION OF FAR-INFRARED BIB-TYPE GE DETECTORS FABRICATED WITH THE SURFACE-ACTIVATED WAFER BONDING TECHNOLOGY

  • Hanaoka, Misaki;Kaneda, Hidehiro;Oyabu, Shinki;Hattori, Yasuki;Tanaka, Kotomi;Ukai, Sota;Shichi, Kazuyuki;Wada, Takehiko;Suzuki, Toyoaki;Watanabe, Kentaroh;Nagase, Koichi;Baba, Shunsuke;Kochi, Chihiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.351-353
    • /
    • 2017
  • To realize large-format compact array detectors covering a wide far-infrared wavelength range up to 200 µm, we have been developing Blocked-Impurity-Band (BIB) type Ge detectors with the room-temperature surface-activated wafer bonding technology provided by Mitsubishi Heavy Industries. We fabricated various types of $p^+-i$ junction devices which possessed a BIB-type structure, and evaluated their spectral response curves using a Fourier transform spectrometer. From the Hall effect measurement, we also obtained the physical characteristics of the $p^+$ layers which constituted the $p^+-i$ junction devices. The overall result of our measurement shows that the $p^+-i$ junction devices have a promising applicability as a new far-infrared detector to cover a wavelength range of $100-200{\mu}m$.

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

Image Enhancement of an Infrared Thermal Camera Using Edge Detection Methods (에지 검출 방법을 이용한 열화상 카메라의 영상 개선)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • This paper proposes a new image enhancement method for an infrared thermal image. The proposed method uses both Laplacian and Prewitt edge detectors. Without a visible light, it uses an infrared image for the edge detection. The method subtracts contour images from the infrared thermal image. It results black contours of objects in the infrared thermal image. That makes the objects in the infrared thermal image distinguished clearly. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using various infrared thermal images. The results show that the proposed method is successful for image enhancement of an infrared thermal image.

Ceramics Superconducting Electronic Device for Infrared detector (세라믹 초전도 전자 소자)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.532-534
    • /
    • 2009
  • The ceramics superconductor may have a high degree of homogeneity and a more open structure through which atoms can easily diffuse without having to overcome the high activation barrier. Infrared detectors of ceramic superconductor materials have been studied. Ceramic superconductor have smaller reflection coefficient than metal superconductor and therefore infrared light can more easily penetrate into bulks. YBCO thick films show sensitivity of 250 V/W. The accumulation of particles decrease the superconducting energy gap.

Single Photon Detectors Technologies Development Trends for Quantum Information (단일광자 검출기 기술개발 동향)

  • Lee, W.J.;Sim, J.S.;Youn, C.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.21-33
    • /
    • 2020
  • Single photon detector technologies have emerged as powerful tools in optical quantum information applications such as quantum communication, quantum information, and integrated quantum photonics. Owing to significant attempts in the previous decade at improving photon-counting detectors, several single photon detectors with high efficiency and low noise have been realized within the optical wavelength regime. In this paper, we provide an overview of current studies on single photon detectors operating at wavelengths from the ultraviolet to the infrared. In addition, we discuss applications of single photon detector technologies in quantum communication and integrated quantum photonics.