• 제목/요약/키워드: initial cracking

검색결과 212건 처리시간 0.03초

SOLIDIFICATION CRACKING SUSCEPTIBILITY OF

  • Yoon, Jong-Won
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.577-582
    • /
    • 2002
  • The solidification cracking susceptibilities of AI-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

철근 콘크리트 보의 손상평가에 대한 실험적 연구 (An Experimental Study on Damage Assessment of Reinforced Concrete Beams)

  • 노원균;심창수;홍창국;김기봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.60-63
    • /
    • 2004
  • The paper deals with the damage assessment of the concrete beam using static displacements and the flexural stiffness reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span, and the applied load level ranged $20\%,\;40\%,\;80\%$ of the flexural strength of the beam. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the stiffness reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Four stages of the behavior of a RC beam, which are uncracked, initial cracking, stabilized cracking and post-yielding, can be considered to assess the damage of RC beams. Main parameters for the assessment were cracking area and the stiffness reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구 (Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact)

  • 김문생;박승범
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.

냉간압연공정에서 공정변수에 따른 엣지 크랙 성장에 관한 연구 (Study of Edge Crack Growth According to Rolling Condition in Cold Rolling)

  • ;이상호;이성진;이종빈;김병민
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.377-384
    • /
    • 2009
  • The shape of edge cracking in rolling process generally occurred "V" shape. This cracking is successively generated at width edge of strip. The edge cracking is developed to center of strip during rolling process. In the results, the strip is occurred fracture, and the productivity is gone down because of the extensive production time. Accordingly, we need to control crack propagation during rolling process. But, the control of cracking is very difficult in rolling process. Previously the studies of edge cracking were mainly performed on hot rolling process. In this paper, the shape of the edge cracking in rolling was estimated according to process conditions such as initial edge crack size, reduction ratio and tension using FE-simulation and the simplicity experiments on cold rolling process.

국내 강섬유를 사용한 강섬유보강 콘크리트 슬래브 모델의 균열 및 변형특성 (Crack and Deformation Behaviors of Steel Fiber Reinforced Concrete Slab Model Specimens Using Domestic Steel Fiber)

  • 박승범;홍석주;이봉춘;조춘근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.319-324
    • /
    • 1999
  • This study is to investigate the properties on the load-deflection and fracture behaviors of the steel fiber reinforced concrete(SFRC) slab model specimens, Steel fibers of indent, crimp, and end hook shape were considered to reinforce the matrix under various mixing conditions and proportions. Initial cracking load, maximum load, and energy absorption capacity(load carrying capacity) of SFRC panel specimen increased with increase of steel fiber contents. And the plain concrete slab was fractured abruptly after maximum load but SRFC slabs were fractured smoothly by steel fibers in concrete matrix operated as cracking resistance force after maximum load. Indent, crimp and end hook shape steel fibers were effective in reinforcing the matrices but end hook type fiber were superior to indent and crimp type fibers.

  • PDF

Effect of Moisture Loss on Development of Distresses in Concrete Pavements

  • 정진훈
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.655-662
    • /
    • 2005
  • Evaporation of concrete influences the development of both initial transverse cracking and delamination in the concrete slab. It was suggested that spatting distress might develop in the slab where the initial transverse cracking occurred by theoretical equations and a field investigation. Thus, efforts to prevent the evaporation of concrete using proper curing methods are required to minimize the distresses of the slabs. Effective curing thickness (ECT) concept was used in this paper to evaluate various curing methods used to prevent the evaporation from concrete. Curing effectiveness quantified by the ECT of different types and amounts of curing compound under various curing conditions was investigated based on the results of laboratory tests. According to the test results, the wind speed is inferred to be a significant factor of the magnitude and continuance duration of the curing effectiveness.

Effect of Epoxy Cracking on Initial Quench Behavior about High Field Superconducting Magnet

  • Lee, B.S.;Kim, D.L.;Choi, Y.S.;Yang, H.S.;Yoo, J.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.26-29
    • /
    • 2006
  • The study to be presented related on initial behavior of quench concerned with many considerations, such as epoxy impregnated coil, critical current density related on strain and temperature, winding effect and behavior of internal superconducting wire. Especially, the deformation behavior of coils under magnetic field and thermal contractions at cryogenic temperatures to be dealt with the analytical method related on Fracture Mechanics. From the results, we know that the strain by self weight contribute to epoxy cracking at the edge of deformed coils and the deformation behavior relate on epoxy cracking must be dealt with biaxial loading problem. Then, the epoxy crack on $r\theta-plane$ under biaxial loading have been propagated with inclined crack angle and joined superconducting wire. Also, we can explain transfer of epoxy crack propagation energy from epoxy resin to superconducting wire.

Study on the Causes of Premature Cracking of Epoxy Coatings for Ship's Ballast Tanks

  • Song, Eun Ha;Lee, Ho Il;Chung, Mong Kyu;Lee, Seong Kyun;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2006
  • Premature cracking of the epoxy coatings applied on ship's ballast tanks(BT) can lead to damage of ship's hulls. To avoid this, it's important to have clear understanding of the underlying mechanism and primary factors of the coating crack. In this study, the efforts were made to clarify the integrated effects of main factors, i.e., initial coating shrinkage, thermally induced strain, steel-structural strain and the intrinsic coating flexibility at the initial and after aging, to the early cracking phenomena of epoxy coating in the ship's ballast tank. The coating crack is caused by combination of thermal stress, structural stress, and internal stresses which is closely related to chemical structures of the coatings. On the other hand, thermal stresses and dimensional stabilities would rarely play a major role in coating crack for ballast tank coatings with rather large flexibility. Crack resistance of the coatings at early stages can be estimated roughly by measuring internal stress, FT-IR and $T_g$ value of the coatings. A new screening test method was also proposed in this study, which can be possibly related to the long-term resistance of epoxy-based paints to cracking.

스프링 체결나사의 응력부식균열 수명예측 (Stress Corrosion Cracking Lifetime Prediction of Spring Screw)

  • 고승기;류창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF