• Title/Summary/Keyword: integer programming

Search Result 809, Processing Time 0.022 seconds

Solving A Quadratic Fractional Integer Programming Problem Using Linearization

  • Gaur, Anuradha;Arora, S.R.
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.25-44
    • /
    • 2008
  • This paper concentrates on reduction of a Quadratic Fractional Integer Programming Problem (QFIP) to a 0-1 Mixed Linear Programming Problem (0-1 MLP). The solution technique is based on converting the integer variables to binary variables and then the resulting Quadratic Fractional 0-1 Programming Problem is linearized to a 0-1 Mixed Linear Programming problem. It is illustrated with the help of a numerical example and is solved using the LINDO software.

An Integer Programming-based Local Search for the Set Partitioning Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.21-29
    • /
    • 2015
  • The set partitioning problem is a well-known NP-hard combinatorial optimization problem, and it is formulated as an integer programming model. This paper proposes an Integer Programming-based Local Search for solving the set partitioning problem. The key point is to solve the set partitioning problem as the set covering problem. First, an initial solution is generated by a simple heuristic for the set covering problem, and then the solution is set as the current solution. Next, the following process is repeated. The original set covering problem is reduced based on the current solution, and the reduced problem is solved by Integer Programming which includes a specific element in the objective function to derive the solution for the set partitioning problem. Experimental results on a set of OR-Library instances show that the proposed algorithm outperforms pure integer programming as well as the existing heuristic algorithms both in solution quality and time.

An Integer Programming-based Local Search for the Multiple-choice Multidimensional Knapsack Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.1-9
    • /
    • 2018
  • The multiple-choice multidimensional knapsack problem (MMKP) is a variant of the well known 0-1 knapsack problem, which is known as an NP-hard problem. This paper proposes a method for solving the MMKP using the integer programming-based local search (IPbLS). IPbLS is a kind of a local search and uses integer programming to generate a neighbor solution. The most important thing in IPbLS is the way to select items participating in the next integer programming step. In this paper, three ways to select items are introduced and compared on 37 well-known benchmark data instances. Experimental results shows that the method using linear programming is the best for the MMKP. It also shows that the proposed method can find the equal or better solutions than the best known solutions in 23 data instances, and the new better solutions in 13 instances.

Optimal Unit Commitment of Hydropower System Using Combined Mixed Integer Programming (통합혼합정수계획법 모형을 이용한 수력발전소의 최적 발전기 운영계획 수립)

  • Lee, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.525-535
    • /
    • 1999
  • An optimal unit commitment model for efficient management of water and energy resources in a basin using combined mixed integer programming is developed. The combined mixed integer programming model is able to solve the inconsistency problem that may occur from mixed integer programming models. The technique which enables the use of conditional constraints and either-or constraints in the linear programming is also suggested. As a result of applying the combined mixed integer programming model to Lower Colorado River Basin in United States. the basin efficiency is decreased by 1.53% from the results of the mixed integer programming, while it is increased by 0.67% from the results of the historical operation. It is found that the decreased allowable error between power supplies and demands in the combined mixed integer programming causes the decreased basin efficiency.

  • PDF

MIXED INTEGER PROGRAMMING MODELS FOR DISPATCHING VEHICLES AT A CONTAINER TERMINAL

  • ZHANG LI WEI;YE RONG;HUANG SHELL YING;HSU WEN JING
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.145-170
    • /
    • 2005
  • This paper presents scheduling models for dispatching vehicles to accomplish a sequence of container jobs at the container terminal, in which the starting times as well as the order of vehicles for carrying out these jobs need to be determined. To deal with this scheduling problem, three mixed 0-1 integer programming models, Model 1, Model 2 and Model 3 are provided. We present interesting techniques to reformulate the two mixed integer programming models, Model 1 and Model 2, as pure 0-1 integer programming problems with simple constraint sets and present a lower bound for the optimal value of Model 1. Model 3 is a complicated mixed integer programming model because it involves a set of non-smooth constraints, but it can be proved that its solutions may be obtained by the so-called greedy algorithm. We present numerical results showing that Model 3 is the best among these three models and the greedy algorithm is capable of solving large scale problems.

Zero-one Integer Programming Approach to Determine the Minimum Break Point Set in Multi-loop and Parallel Networks

  • Moirangthem, Joymala;Dash, Subhransu Sekhar;Ramaswami, Ramas
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2012
  • The current study presents a zero-one integer programming approach to determine the minimum break point set for the coordination of directional relays. First, the network is reduced if there are any parallel lines or three-end nodes. Second, all the directed loops are enumerated to reduce the iteration. Finally, the problem is formulated as a set-covering problem, and the break point set is determined using the zero-one integer programming technique. Arbitrary starting relay locations and the arbitrary consideration of relay sequence to set and coordinate relays result in navigating the loops many times and futile attempts to achieve system-wide relay coordination. These algorithms are compared with the existing methods, and the results are presented. The problem is formulated as a setcovering problem solved by the zero-one integer programming approach using LINGO 12, an optimization modeling software.

A FILLED FUNCTION METHOD FOR BOX CONSTRAINED NONLINEAR INTEGER PROGRAMMING

  • Lin, Youjiang;Yang, Yongjian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.985-999
    • /
    • 2011
  • A new filled function method is presented in this paper to solve box-constrained nonlinear integer programming problems. It is shown that for a given non-global local minimizer, a better local minimizer can be obtained by local search starting from an improved initial point which is obtained by locally solving a box-constrained integer programming problem. Several illustrative numerical examples are reported to show the efficiency of the present method.

Optimizing delivery routing problem for logistics companies based on Integer Linear Programming method

  • Cao, Ngoc-Anh;Phan, Thanh-Hang;Chinh, Nguyen Thi;Tran, Duc-Quynh;Nguyen, Ha-Nam;Trang, Ngo-Thi-Thu;Choi, Gyoo-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.212-221
    • /
    • 2022
  • Currently, issues related to freight at Vietnamese logistics companies are becoming more and more urgent because of typical problems in Vietnam such as traffic, infrastructure, and application of information technology. This problem has been studied by applying many different approaches such as Integer Programming (LP), Mixed Integer Programming (MIP), hybrid, meta search, … In this paper, we applied the ILP model in order to deal with the VRP problem in a small size logistics company which is very popular in Vietnam. The experiments showed promising results with some optimal solutions with some small extra costs.

Average Shadow Price in Integer Programming and its Stability Analysis (정수계획모형에서의 평균잠재가격과 이의 안정성)

  • 조성철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.109-119
    • /
    • 1999
  • The average shadow price is a substitute for the traditional marginal shadow price. It can serve as a standard for decision making problems about the economic resources where the marginal analysis gives no useful information. This paper treats the average shadow price in pure integer programming and shows some stability properties of it. This implies that the values of the average shadow prices once computed are reliable within some extent of the data perturbations of the integer programming model.

  • PDF