• Title/Summary/Keyword: integration operational matrices

Search Result 8, Processing Time 0.024 seconds

A New Block Pulse Operational Matrices Improved by The Second Order Lagrange Interpolation Polynomial (Lagrange 이차 보간 다항식을 이용한 새로운 일반형 블럭 펄스 적분 연산 행렬)

  • 심재선;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.351-358
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices and generalized integration operational matrix by using the Lagrange second order interpolation polynomial.

Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices (새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.

A Block Pulse Operational Matrices by Interpolation Polynomial (보간 다항식을 이용한 일반형 블록펄스 적분연산행렬)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.45-48
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently. it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices.

  • PDF

A Derivation of Operational Matrices via Improved Block Pulse Coefficients Estimation Method (개선된 블럭 펄스 계수 추정 기법을 이용한 적분 연산 행렬 유도)

  • Kim, Tai-Hoon;Shim, Jae-Sun;Lee, Hae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2277-2279
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices by using the Lagrange second order interpolation polynomial and expands that matrix to general form.

  • PDF

Study on The Integration Operational Metrices Improved by The Lagrange Second Order Interpolation Polynomial (Lagrange 이차 보간 다앙식을 이용한 개선된 적분 연산 행렬에 관한 연구)

  • Kim, Tai-Hoon;Lee, Hae-Ki;Chung, Je-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.286-293
    • /
    • 2002
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of continuous-time dynamic systems more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and drives the related integration operational matrices by using the Lagrange second order interpolation polynomial.

A Study on The Error Analysis of Integration Operational Metrices by The Lagrange Second Order Interpolation Polvnomial (Lagrange 이차 보간 다항식을 이용한 적분연산 행렬의 오차 해석에 관한 연구)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.55-57
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. In this paper, the accuracy of the Block Pulse series coefficients derived by using the Lagrange second order interpolation polynomial is approved by the mathematical method.

  • PDF

Parameter Estimation of The Distributed System via Improved Block Pulse Coefficients Estimation

  • Kim, Tai-hoon;Shim, Jae-sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.61.6-61
    • /
    • 2002
  • In these days, Block Pulse functions are used in a variety of fields such as the analysis and controller design of the systems. In applying the Block Pulse function technique to control and systems science, the integral operation of the Block Pulse series plays important roles. This is because differential equations are always involved in the representations of continuous-time models of dynamic systems, and differential operations are always approximated by the corresponding Block Pulse series through integration operational matrices. In order to apply the Block Pulse function technique to the problems of continuous-time dynamic systems more efficiently, it is necessary to find th...

  • PDF

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.